Login

Gulls
GP: 84 | W: 42 | L: 31 | OTL: 11 | P: 95
GF: 271 | GA: 282 | PP%: 32.80% | PK%: 73.29%
GM : Roger Storoschuk | Morale : 49 | Team Overall : 61
Next Games #1298 vs Bruins
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Gulls
42-31-11, 95pts
6
FINAL
5 Wild
59-15-10, 128pts
Team Stats
L1StreakW1
20-14-7Home Record31-5-5
22-17-4Home Record28-10-5
4-5-1Last 10 Games8-1-1
3.23Goals Per Game4.20
3.36Goals Against Per Game2.63
32.80%Power Play Percentage23.98%
73.29%Penalty Kill Percentage77.27%
Gulls
42-31-11, 95pts
3
FINAL
5 Wolf Pack
46-30-8, 100pts
Team Stats
L1StreakW5
20-14-7Home Record25-15-2
22-17-4Home Record21-15-6
4-5-1Last 10 Games8-1-1
3.23Goals Per Game2.42
3.36Goals Against Per Game2.43
32.80%Power Play Percentage34.67%
73.29%Penalty Kill Percentage74.67%
Bruins
37-38-8, 82pts
Day 104
Gulls
42-31-11, 95pts
Team Stats
W5StreakL1
20-19-3Home Record20-14-7
17-19-5Away Record22-17-4
6-4-0Last 10 Games4-5-1
2.49Goals Per Game3.23
2.76Goals Against Per Game3.23
24.35%Power Play Percentage32.80%
72.77%Penalty Kill Percentage73.29%
Rocket
54-25-4, 112pts
Day 106
Gulls
42-31-11, 95pts
Team Stats
W1StreakL1
26-13-3Home Record20-14-7
28-12-1Away Record22-17-4
5-4-1Last 10 Games4-5-1
4.16Goals Per Game3.23
2.93Goals Against Per Game3.23
29.32%Power Play Percentage32.80%
74.49%Penalty Kill Percentage73.29%
Gulls
42-31-11, 95pts
Day 107
Wolf Pack
46-30-8, 100pts
Team Stats
L1StreakW5
20-14-7Home Record25-15-2
22-17-4Away Record21-15-6
4-5-1Last 10 Games8-1-1
3.23Goals Per Game2.42
3.36Goals Against Per Game2.42
32.80%Power Play Percentage34.67%
73.29%Penalty Kill Percentage74.67%
Team Leaders
Tanner PearsonGoals
Tanner Pearson
36
Tanner PearsonAssists
Tanner Pearson
51
Tanner PearsonPoints
Tanner Pearson
87
Plus/Minus
Zachary Jones
17
Jonas JohanssonWins
Jonas Johansson
25
Joey DaccordSave Percentage
Joey Daccord
0.88

Team Stats
Goals For
271
3.23 GFG
Shots For
1963
23.37 Avg
Power Play Percentage
32.8%
62 GF
Offensive Zone Start
34.1%
Goals Against
282
3.36 GAA
Shots Against
2073
24.68 Avg
Penalty Kill Percentage
73.3%%
78 GA
Defensive Zone Start
37.8%
Team Info

General ManagerRoger Storoschuk
CoachDavid Quinn
DivisionDivision 1
ConferenceConference 1
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance1,833
Season Tickets1,500


Roster Info

Pro Team26
Farm Team21
Contract Limit47 / 100
Prospects65


Team History

This Season42-31-11 (95PTS)
History178-136-35 (0.510%)
Playoff Appearances3
Playoff Record (W-L)1-4
Stanley Cup0


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Tanner PearsonX100.0080895880766560704078636741757463806703122,875,000$
2Jordan GreenwayXX100.0083468880866579642964656625707162676602742,201,000$
3Noah GregorXX100.008266837769648162356472682564646780660252965,000$
4Josh ArchibaldXX100.0096568178645656633064627825697164776503112,526,000$
5Dakota JoshuaXX100.009378787171598960516268742561616670650273900,000$
6Patrick MaroonXX100.0088994872895698613061585825818959766403522,300,000$
7Rhett GardnerXX100.0079836968838187597460556350505059836302821,052,000$
8Alex GalchenyukXXX100.0073439074754873585549556162798157766103012,100,000$
9Nathan Todd (R)X100.007674866374575565805870646746466552610282799,898$
10Arnaud Durandeau (R)X100.007066856867798462506160605846466377610253966,000$
11Cole Schwindt (R)XX100.007469886371828957735257615547465971600223843,037$
12C.J. SmithX100.0073669068665860535045576354565658455702921,211,000$
13Mike ReillyX99.0075747081747275652556576850686860796703022,600,000$
14Sean Walker (R)X100.0076438678706558602552517625676658346502911,039,000$
15Connor Mackey (R)X100.0085995571786462562551517675505058836402731,319,000$
16Zachary JonesX100.006041927367688361254649707550505679620233843,165$
17Keaton MiddletonX100.007887546187717751254741613847475076600261892,066$
18Wyatt Newpower (R)X100.007273716073677345253440583844445022550262969,000$
Scratches
1Mark JankowskiXXHO72448975806372618361678025676666576602931,500,000$
2Markus Nurmi (R)XX100.007469916369676958505260625845456220580253925,000$
3Brandon Coe (R)X100.007772896472707550504947624544445620560233925,000$
4Colton Poolman (R)X100.007872965872727947253840613846465157580282931,000$
TEAM AVERAGE99.95786979707466745943555766455858606362
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Joey Daccord (R)100.00615366776468667271659546466290640274875,710$
2Vadim Zherenko (R)100.00595063666564536360563045455687580233846,667$
Scratches
1Oskari Salminen (R)100.00515771834953495551513044445220540243833,000$
2Zach Sawchenko (R)100.00505771704851505550503044445120520262757,231$
TEAM AVERAGE100.0055546874575955615856464545555457
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
David Quinn93666855654666USA5512,500,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Tanner PearsonGulls (ANA)LW763651871521995123862267113515.93%25132217.40918272910703371393241.73%1395822211.3214748762
2Jordan GreenwayGulls (ANA)LW/RW75324779138201241212125711615.09%46158721.16713202610332591464236.23%1386829011.0025022943
3Josh ArchibaldGulls (ANA)LW/RW8025406542010115951684710614.88%32138917.3651621201070000292235.28%5132621010.9416110933
4Casey MittelstadtDucksC/LW3224305413602854130236918.46%1469521.74581319780001272156.29%5561511001.5512000712
5Noah GregorGulls (ANA)LW/RW83173451-105850123110180631219.44%32142717.19614202293213111091141.06%2465015000.71311424033
6Dakota JoshuaGulls (ANA)C/LW80262147-49365137121101336325.74%25140417.56881614941124936143.42%9882324010.6703166233
7Rhett GardnerGulls (ANA)C/LW84231942-616890132116105274321.90%17124214.794049571014244155.43%4421214000.6814954432
8Patrick MaroonGulls (ANA)LW/RW78172239-423212014587127359113.39%25137917.69314125900011004042.31%1303220000.57026513123
9Mike ReillyGulls (ANA)D8493039-1526012013911614141646.38%90207724.736612211481233201200%04852000.38118106012
10Mark JankowskiGulls (ANA)C/LW2791625-11410216344212720.45%1554620.231897400003711159.47%607919100.9202002104
11Connor MackeyGulls (ANA)D8441923112641301341117031215.71%85176321.0032512980113137000%01437000.26001178001
12Zachary JonesGulls (ANA)D8441822172115581316528376.15%75190122.6320291080115205000%01556000.2300012001
13Arnaud DurandeauGulls (ANA)LW8471421775192661212711.48%34154.9400000000000150.00%6136001.0100001020
14Nathan ToddGulls (ANA)C69127191055464571153716.90%35217.56000120000122054.04%1611610000.7300010212
15Keaton MiddletonGulls (ANA)D84316191013735132903716218.11%43143817.121123110222121000%0420100.2601232031
16Cole SchwindtGulls (ANA)C/RW82711185401087944113415.91%9108413.2300001000002047.83%23146000.3300000012
17Alex GalchenyukGulls (ANA)C/LW/RW848917-655818662325212.90%12120714.380221381011972157.87%2161916000.2800001100
18Sean WalkerGulls (ANA)D67311141210068985825305.17%51118917.75213872000284100%0936000.2401000121
19Dysin MayoDucksD4341014-24201049684423219.09%64112926.2633610730000112100%01028000.2511101011
20Jack JohnsonDucksD781897406187217104.76%43107113.7300003000042000%3328100.1711000000
21Noel AcciariDucksC/RW3257-30031093722.22%07224.2303306101370059.38%9630001.9300000001
22C.J. SmithGulls (ANA)LW382464552312163712.50%11995.2601111000000150.00%452000.6000100000
23Colton PoolmanGulls (ANA)D6214532715192511949.09%175949.590000001107000%0013000.1700111000
24Michael AndersonDucksD2011-100331010%12814.100000000000000%001000.7100000000
25Markus NurmiGulls (ANA)LW/RW3601100014126230%21754.8801102000000033.33%311000.1100000000
26Brandon CoeGulls (ANA)RW3000000100000%051.760000000000000%00000000000000
27Wyatt NewpowerGulls (ANA)D8000000013010%1506.350000000002000%00000000000000
Team Total or Average1610276448724451617805190618532013644114813.71%7312592116.10651061712241313101424591776371448.68%4271467487540.561244524861443637
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Jonas JohanssonDucks55251880.8653.013014611511118636130.76025550213
2Joey DaccordGulls (ANA)2415610.8803.2613080171590308201.0005231200
3Vadim ZherenkoGulls (ANA)182720.8603.936872045322158000.72711672020
4Oskari SalminenGulls (ANA)30000.8503.5610100640180000011000
Team Total or Average1004231110.8683.215111822732070112033418484433


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Waiver Possible Contract Type Current Salary Salary RemainingSalary AverageSalary Ave RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Alex GalchenyukGulls (ANA)C/LW/RW301994-02-11No207 Lbs6 ft1NoNoNoNo1Pro & Farm2,100,000$219,130$2,100,000$219,130$0$0$NoLink / NHL Link
Arnaud DurandeauGulls (ANA)LW251999-01-14Yes181 Lbs5 ft11NoNoNoNo3Pro & Farm966,000$100,800$750,000$78,261$0$0$No966,000$966,000$Link
Brandon CoeGulls (ANA)RW232001-01-12Yes188 Lbs6 ft4NoNoNoNo3Pro & Farm925,000$96,522$925,000$96,522$0$0$No925,000$925,000$
C.J. SmithGulls (ANA)LW291994-11-30No181 Lbs5 ft11NoNoNoNo2Pro & Farm1,211,000$126,365$1,211,000$126,365$0$0$No1,211,000$Link / NHL Link
Cole SchwindtGulls (ANA)C/RW222001-04-25Yes182 Lbs6 ft2NoNoNoNo3Pro & Farm843,037$87,969$843,037$87,969$0$0$No934,000$934,000$Link
Colton PoolmanGulls (ANA)D281995-12-18Yes195 Lbs6 ft1NoNoNoNo2Pro & Farm931,000$97,148$931,000$97,148$0$0$No931,000$Link
Connor MackeyGulls (ANA)D271996-09-12Yes201 Lbs6 ft2NoNoNoNo3Pro & Farm1,319,000$137,635$1,319,000$137,635$0$0$No1,319,000$1,319,000$Link
Dakota JoshuaGulls (ANA)C/LW271996-05-15No183 Lbs6 ft2NoNoNoNo3Pro & Farm900,000$93,913$900,000$93,913$0$0$No900,000$900,000$Link
Joey DaccordGulls (ANA)G271996-08-19Yes197 Lbs6 ft2NoNoNoNo4Pro & Farm875,710$91,378$875,710$91,378$0$0$No1,205,000$1,205,000$1,205,000$Link / NHL Link
Jordan GreenwayGulls (ANA)LW/RW271997-02-16No225 Lbs6 ft6NoNoNoNo4Pro & Farm2,201,000$229,670$913,234$95,294$0$0$No835,000$835,000$835,000$Link / NHL Link
Josh ArchibaldGulls (ANA)LW/RW311992-06-10No176 Lbs5 ft10NoNoNoNo1Pro & Farm2,526,000$263,583$2,526,000$263,583$0$0$NoLink
Keaton MiddletonGulls (ANA)D261998-02-10No234 Lbs6 ft5NoNoNoNo1Pro & Farm892,066$93,085$750,000$78,261$0$0$NoLink / NHL Link
Mark JankowskiGulls (ANA)C/LW291994-09-13No212 Lbs6 ft4NoNoNoYes3Pro & Farm1,500,000$156,522$1,500,000$156,522$0$0$No1,500,000$1,500,000$Link / NHL Link
Markus NurmiGulls (ANA)LW/RW251998-06-29Yes176 Lbs6 ft4NoNoNoNo3Pro & Farm925,000$96,522$925,000$96,522$0$0$No925,000$925,000$
Mike ReillyGulls (ANA)D301993-07-13No200 Lbs6 ft1NoNoNoNo2Pro & Farm2,600,000$271,304$2,600,000$271,304$0$0$No2,600,000$Link / NHL Link
Nathan ToddGulls (ANA)C281995-12-02Yes201 Lbs6 ft1NoNoNoNo2Pro & Farm799,898$83,468$799,898$83,468$0$0$No799,898$Link
Noah GregorGulls (ANA)LW/RW251998-07-28No185 Lbs6 ft0NoNoNoNo2Pro & Farm965,000$100,696$750,000$78,261$0$0$No965,000$Link
Oskari SalminenGulls (ANA)G241999-09-22Yes201 Lbs6 ft4NoNoNoNo3Pro & Farm833,000$86,922$833,000$86,922$0$0$No833,000$833,000$Link
Patrick MaroonGulls (ANA)LW/RW351988-04-23No236 Lbs6 ft2NoNoNoNo2Pro & Farm2,300,000$240,000$2,300,000$240,000$0$0$No2,300,000$Link / NHL Link
Rhett GardnerGulls (ANA)C/LW281996-02-28No225 Lbs6 ft3NoNoNoNo2Pro & Farm1,052,000$109,774$1,052,000$109,774$0$0$No1,052,000$Link / NHL Link
Sean WalkerGulls (ANA)D291994-11-13Yes196 Lbs5 ft11NoNoNoNo1Pro & Farm1,039,000$108,417$1,039,000$108,417$0$0$NoLink
Tanner PearsonGulls (ANA)LW311992-08-10No201 Lbs6 ft1NoNoNoNo2Pro & Farm2,875,000$300,000$2,875,000$300,000$0$0$No2,875,000$Link / NHL Link
Vadim ZherenkoGulls (ANA)G232001-03-15Yes172 Lbs6 ft2NoNoNoNo3Pro & Farm846,667$88,348$846,667$88,348$0$0$No846,667$846,667$
Wyatt NewpowerGulls (ANA)D261997-12-09Yes194 Lbs6 ft3NoNoNoNo2Pro & Farm969,000$101,113$969,000$101,113$0$0$No969,000$Link
Zach SawchenkoGulls (ANA)G261997-12-30Yes185 Lbs6 ft1NoNoNoNo2Pro & Farm757,231$79,015$757,231$79,015$0$0$No757,231$Link
Zachary JonesGulls (ANA)D232000-10-18No175 Lbs5 ft11NoNoNoNo3Pro & Farm843,165$87,982$843,165$87,982$0$0$No1,258,000$1,258,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2627.08197 Lbs6 ft22.381,307,491$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Tanner PearsonDakota JoshuaJordan Greenway40122
2Josh ArchibaldRhett GardnerNoah Gregor30122
3Patrick MaroonAlex GalchenyukCole Schwindt20122
4Arnaud DurandeauNathan ToddC.J. Smith10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Mike ReillySean Walker35122
2Connor MackeyZachary Jones30122
3Keaton Middleton25122
4Wyatt NewpowerMike Reilly10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Tanner PearsonDakota JoshuaJordan Greenway60122
2Josh ArchibaldRhett GardnerNoah Gregor40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Mike ReillySean Walker60122
2Connor MackeyZachary Jones40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Dakota JoshuaTanner Pearson60122
2Rhett GardnerNoah Gregor40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Mike ReillySean Walker60122
2Connor MackeyZachary Jones40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Dakota Joshua60122Mike ReillySean Walker60122
2Rhett Gardner40122Connor MackeyZachary Jones40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Dakota JoshuaTanner Pearson60122
2Rhett GardnerNoah Gregor40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Mike ReillySean Walker60122
2Connor MackeyZachary Jones40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Tanner PearsonDakota JoshuaJordan GreenwayMike ReillySean Walker
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Tanner PearsonDakota JoshuaJordan GreenwayMike ReillySean Walker
Extra Forwards
Normal PowerPlayPenalty Kill
Dakota Joshua, Patrick Maroon, Rhett GardnerDakota Joshua, Patrick MaroonDakota Joshua
Extra Defensemen
Normal PowerPlayPenalty Kill
Keaton Middleton, , Wyatt NewpowerKeaton MiddletonKeaton Middleton,
Penalty Shots
Tanner Pearson, Jordan Greenway, Noah Gregor, Josh Archibald, Dakota Joshua
Goalie
#1 : , #2 : Vadim Zherenko


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals21100000711-41010000029-71100000052320.5007111800559011613805296137996246184160600.00%8450.00%1676136349.60%702150846.55%506112345.06%156767215929031954962
2Americans2000010146-21000000123-11000010023-120.500459005590116134252961379962572130662150.00%9188.89%0676136349.60%702150846.55%506112345.06%156767215929031954962
3Barracuda2010000114-31000000112-11010000002-210.250123005590116133352961379962271117383133.33%6266.67%0676136349.60%702150846.55%506112345.06%156767215929031954962
4Bears20200000211-91010000015-41010000016-500.00023500559011613225296137996239918402150.00%9544.44%0676136349.60%702150846.55%506112345.06%156767215929031954962
5Bruins52100020191542100001012843110001077080.8001929481055901161313952961379962125296312614750.00%19478.95%0676136349.60%702150846.55%506112345.06%156767215929031954962
6Canucks65001000422220320010002410143300000018126121.000426911100559011613169529613799621524419411720630.00%22768.18%4676136349.60%702150846.55%506112345.06%156767215929031954962
7Checkers2110000047-3110000002111010000026-420.5004610005590116134252961379962481744384125.00%7271.43%0676136349.60%702150846.55%506112345.06%156767215929031954962
8Comets2010010048-41010000036-31000010012-110.2504711005590116133852961379962301015432150.00%5260.00%1676136349.60%702150846.55%506112345.06%156767215929031954962
9Condors623001002329-6311001001215-3312000001114-350.41723386100559011613198529613799622107813112914535.71%28967.86%1676136349.60%702150846.55%506112345.06%156767215929031954962
10Crunch612011011319-63010110079-231100001610-460.50013253800559011613865296137996211030981349444.44%14378.57%0676136349.60%702150846.55%506112345.06%156767215929031954962
11Eagles3210000067-1220000006151010000006-640.667691501559011613575296137996251225677400.00%13469.23%0676136349.60%702150846.55%506112345.06%156767215929031954962
12Griffins21000010166101100000011291000001054141.000162541005590116134352961379962612274848450.00%11372.73%0676136349.60%702150846.55%506112345.06%156767215929031954962
13Heat21001000532110000003211000100021141.000571200559011613285296137996233930345120.00%5260.00%0676136349.60%702150846.55%506112345.06%156767215929031954962
14IceHogs211000006601010000024-21100000042220.500691500559011613555296137996261168394250.00%4175.00%0676136349.60%702150846.55%506112345.06%156767215929031954962
15Islanders2010001048-41010000005-51000001043120.500437005590116134252961379962562390455240.00%5260.00%0676136349.60%702150846.55%506112345.06%156767215929031954962
16Marlies2010000135-21010000023-11000000112-110.25035800559011613355296137996247211336200.00%4175.00%0676136349.60%702150846.55%506112345.06%156767215929031954962
17Monsters20200000816-81010000047-31010000049-500.00081422005590116134252961379962672359582150.00%7271.43%0676136349.60%702150846.55%506112345.06%156767215929031954962
18Moose22000000523110000002111100000031241.000561100559011613295296137996232151639400.00%3166.67%0676136349.60%702150846.55%506112345.06%156767215929031954962
19Penguins210001008711000010034-11100000053230.75081220005590116134752961379962311440366350.00%5340.00%0676136349.60%702150846.55%506112345.06%156767215929031954962
20Phantoms21100000660110000005321010000013-220.50061016005590116135652961379962491321504125.00%30100.00%1676136349.60%702150846.55%506112345.06%156767215929031954962
21Reign2020000005-51010000002-21010000003-300.0000001055901161319529613799623482135300.00%30100.00%0676136349.60%702150846.55%506112345.06%156767215929031954962
22Roadrunners210000017521000000112-11100000063330.75071219005590116135052961379962571726553133.33%9188.89%0676136349.60%702150846.55%506112345.06%156767215929031954962
23Rocket11000000101000000000001100000010121.00012301559011613752961379962177231811100.00%40100.00%0676136349.60%702150846.55%506112345.06%156767215929031954962
24Senators22000000734110000002111100000052341.00071219005590116136152961379962521065468337.50%6183.33%0676136349.60%702150846.55%506112345.06%156767215929031954962
25Silver Knights532000002119222000000136731200000813-560.600213657105590116131475296137996212946719013430.77%19573.68%1676136349.60%702150846.55%506112345.06%156767215929031954962
26Stars20001010532100000102111000100032141.0005611005590116134252961379962472631456116.67%8187.50%0676136349.60%702150846.55%506112345.06%156767215929031954962
27Thunderbirds211000008531010000012-11100000073420.500813210055901161366529613799626926704610440.00%10190.00%0676136349.60%702150846.55%506112345.06%156767215929031954962
28Wild513000102021-121100000871302000101214-240.40020335300559011613153529613799621596087847228.57%16381.25%0676136349.60%702150846.55%506112345.06%156767215929031954962
29Wolf Pack523000001114-33120000068-22110000056-140.40011142500559011613875296137996292209311611327.27%19573.68%1676136349.60%702150846.55%506112345.06%156767215929031954962
30Wolves2010000159-41000000123-11010000036-310.2505813005590116134852961379962852672397228.57%11372.73%0676136349.60%702150846.55%506112345.06%156767215929031954962
Total84323104566271282-1141161402324139132743161702242132150-18950.565271431702325590116131963529613799622073691161718631896232.80%2927873.29%10676136349.60%702150846.55%506112345.06%156767215929031954962
_Since Last GM Reset84323104566271282-1141161402324139132743161702242132150-18950.565271431702325590116131963529613799622073691161718631896232.80%2927873.29%10676136349.60%702150846.55%506112345.06%156767215929031954962
_Vs Conference51202002333181185-4249802212968610271112001218599-14560.54918129847921559011613126352961379962131641099610771154236.52%1804773.89%8676136349.60%702150846.55%506112345.06%156767215929031954962
_Vs Division231614022319282101185022105337161289000213945-6450.978921522442055901161359452961379962585196464443581729.31%832569.88%6676136349.60%702150846.55%506112345.06%156767215929031954962

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
8495L1271431702196320736911617186332
All Games
GPWLOTWOTL SOWSOLGFGA
8432314566271282
Home Games
GPWLOTWOTL SOWSOLGFGA
4116142324139132
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4316172242132150
Last 10 Games
WLOTWOTL SOWSOL
450100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1896232.80%2927873.29%10
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
52961379962559011613
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
676136349.60%702150846.55%506112345.06%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
156767215929031954962


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
110Gulls5Condors7ALBoxScore
227Crunch3Gulls4BWXBoxScore
332Gulls6Canucks4AWBoxScore
447Canucks3Gulls4BWXBoxScore
669Gulls4Wild5ALBoxScore
785Gulls2Silver Knights4ALBoxScore
889Bruins6Gulls9BWBoxScore
9113Wolf Pack3Gulls2BLBoxScore
10130Silver Knights3Gulls5BWBoxScore
11143Gulls2Wolf Pack1AWBoxScore
13166Wild1Gulls4BWBoxScore
14180Gulls4Bruins3AWXXBoxScore
15189Gulls4Condors2AWBoxScore
16204Condors4Gulls6BWBoxScore
17220Gulls7Canucks4AWBoxScore
18227Gulls1Crunch5ALBoxScore
19242Crunch5Gulls3BLBoxScore
20262Gulls5Silver Knights3AWBoxScore
21276Wolf Pack2Gulls3BWBoxScore
22290Gulls3Moose1AWBoxScore
23303Monsters7Gulls4BLBoxScore
24321Gulls0Eagles6ALBoxScore
25335Comets6Gulls3BLBoxScore
27352Gulls2Americans3ALXBoxScore
28365Reign2Gulls0BLBoxScore
29382Gulls2Checkers6ALBoxScore
30397Checkers1Gulls2BWBoxScore
32415Gulls1Bruins3ALBoxScore
33428Wolves3Gulls2BLXXBoxScore
35440Gulls3Wolves6ALBoxScore
36457Gulls4Crunch3AWBoxScore
37465Wolf Pack3Gulls1BLBoxScore
39489Crunch1Gulls0BLXBoxScore
40506Gulls4IceHogs2AWBoxScore
41519Gulls1Bears6ALBoxScore
42526Moose1Gulls2BWBoxScore
43549Gulls1Crunch2ALXXBoxScore
44556Penguins4Gulls3BLXBoxScore
46579Gulls1Marlies2ALXXBoxScore
47594Marlies3Gulls2BLBoxScore
48611Gulls0Barracuda2ALBoxScore
49625Bears5Gulls1BLBoxScore
50642Gulls2Bruins1AWBoxScore
51651IceHogs4Gulls2BLBoxScore
52670Gulls1Phantoms3ALBoxScore
53682Stars1Gulls2BWXXBoxScore
55704Gulls0Reign3ALBoxScore
56712Islanders5Gulls0BLBoxScore
58739Roadrunners2Gulls1BLXXBoxScore
59756Gulls4Monsters9ALBoxScore
60769Barracuda2Gulls1BLXXBoxScore
61784Gulls2Heat1AWXBoxScore
62797Heat2Gulls3BWBoxScore
64816Gulls1Comets2ALXBoxScore
65823Gulls1Rocket0AWBoxScore
66837Silver Knights3Gulls8BWBoxScore
68855Gulls6Roadrunners3AWBoxScore
69870Americans3Gulls2BLXXBoxScore
71891Gulls5Griffins4AWXXBoxScore
72900Bruins2Gulls3BWXXBoxScore
73922Thunderbirds2Gulls1BLBoxScore
75942Gulls5Admirals2AWBoxScore
76955Griffins2Gulls11BWBoxScore
78980Phantoms3Gulls5BWBoxScore
79995Gulls5Penguins3AWBoxScore
801010Canucks3Gulls7BWBoxScore
821030Gulls2Wild4ALBoxScore
831043Eagles1Gulls4BWBoxScore
841060Gulls5Senators2AWBoxScore
851074Eagles0Gulls2BWBoxScore
861087Gulls3Stars2AWXBoxScore
871102Wild6Gulls4BLBoxScore
891124Gulls4Islanders3AWXXBoxScore
901132Canucks4Gulls13BWBoxScore
911149Gulls1Silver Knights6ALBoxScore
921165Admirals9Gulls2BLBoxScore
931176Gulls2Condors5ALBoxScore
941193Condors7Gulls3BLBoxScore
951204Gulls5Canucks4AWBoxScore
971227Senators1Gulls2BWBoxScore
981234Gulls7Thunderbirds3AWBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
1001258Condors4Gulls3BLXBoxScore
1011267Gulls6Wild5AWXXBoxScore
1021283Gulls3Wolf Pack5ALBoxScore
1041298Bruins-Gulls-
1061321Rocket-Gulls-
1071327Gulls-Wolf Pack-
1101355Wild-Gulls-
1121373Silver Knights-Gulls-
1131388Gulls-Condors-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price4020
Attendance51,84223,313
Attendance PCT63.22%56.86%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
4 1833 - 61.10% 92,305$3,784,506$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
5,271,084$ 3,249,477$ 3,063,395$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
28,256$ 3,031,949$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
369,220$ 12 49,995$ 599,940$




Gulls Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS
1Tanner Pearson1687998177427029422853014.91%62333419.85253863971341410644.88%21.06512
2Taylor Raddysh2207876154633336134247516.42%98441420.0723244773101911246.47%20.7039
3Darren Helm164638514843128725843914.35%91337020.5518345258134710152.71%20.8826
4Michael Amadio2724477121-162133733539811.06%62412315.165101526314124451.60%00.5903
5Alex Galchenyuk1874072112-94323925726115.33%44336518.0015274246224711455.78%10.6703

Gulls Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA
1Joey Daccord1909071200.8732.921078669525414322461070.64342
2Will Cranley895225100.8882.85514408244218812531010.47117
3Jonas Johansson55251880.8653.013014611511118636130.76025
4Mikhail Berdin3881320.8583.0115352177543299010.54511
5Vadim Zherenko182720.8603.936872045322158000.72711

Gulls Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
202090353707623253282-2945171904212122144-2245181803411131138-797253408661454097107141784344642782342106684134817632016431.84%2958471.53%5740139553.05%821159051.64%588110453.26%1597622168697821571084
2021904927027233452628345271200213167111564522150251017815127116345567912188813012392893865102698335231776479524532767025.36%2617272.41%111025182456.20%816152753.44%689124855.21%190897516339051889932
202292324104636228266-3846152102215107130-2346172002421121136-15902283645924437869811178536164075556199866857619972176831.34%2126171.23%4687134351.15%710144049.31%504101149.85%1674653167597922341147
202384323104566271282-1141161402324139132743161702242132150-1895271431702325590116131963529613799622073691161718631896232.80%2927873.29%10676136349.60%702150846.55%506112345.06%156767215929031954962
Total Regular Season3561481360172413181097109251777566089514535517181797370091584562575-133981097177028671219220403444478425209929213319187849428074336807688326429.90%106029572.17%303128592552.79%3049606550.27%2287448650.98%674729246587376782364126
Playoff
202151400000919-1020200000312-93120000067-12914231023401041750370175523310417211.76%14378.57%0227230.56%3810536.19%336451.56%84341115010353
Total Playoff51400000919-1020200000312-93120000067-12914231023401041750370175523310417211.76%14378.57%0227230.56%3810536.19%336451.56%84341115010353

Gulls Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS
15415-209141822.22%512024.08202400001133.33%10.8300
25145-221061010.00%010721.54011300010033.33%00.9300
35123-4428156.67%29519.180221000000100.00%00.6300
45033-365720%510521.0000000000000%00.5700
55202-34691711.76%49318.70000000000040.91%00.4300

Gulls Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA
151400.8993.492412014139830100
220000.8864.215700435200000