Login

Phantoms
GP: 45 | W: 23 | L: 13 | OTL: 9 | P: 55
GF: 173 | GA: 164 | PP%: 28.95% | PK%: 68.38%
GM : Shareem Mallick | Morale : 49 | Team Overall : 55
Next Games #715 vs Gulls
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Checkers
23-18-5, 51pts
1
FINAL
3 Phantoms
23-13-9, 55pts
Team Stats
W1StreakSOL1
9-11-3Home Record14-4-5
14-7-2Home Record9-9-4
5-4-1Last 10 Games5-3-2
2.74Goals Per Game3.84
3.00Goals Against Per Game3.64
29.60%Power Play Percentage28.95%
76.52%Penalty Kill Percentage68.38%
Phantoms
23-13-9, 55pts
2
FINAL
3 Wolves
27-15-4, 58pts
Team Stats
SOL1StreakW6
14-4-5Home Record14-8-1
9-9-4Home Record13-7-3
5-3-2Last 10 Games8-1-1
3.84Goals Per Game2.98
3.64Goals Against Per Game2.54
28.95%Power Play Percentage21.50%
68.38%Penalty Kill Percentage81.82%
Phantoms
23-13-9, 55pts
Day 57
Gulls
25-15-5, 55pts
Team Stats
SOL1StreakL1
14-4-5Home Record12-9-2
9-9-4Away Record13-6-3
5-3-2Last 10 Games4-4-2
3.84Goals Per Game3.33
3.64Goals Against Per Game3.33
28.95%Power Play Percentage31.78%
68.38%Penalty Kill Percentage74.11%
Condors
35-6-6, 76pts
Day 58
Phantoms
23-13-9, 55pts
Team Stats
OTL1StreakSOL1
16-2-5Home Record14-4-5
19-4-1Away Record9-9-4
8-0-2Last 10 Games5-3-2
3.77Goals Per Game3.84
2.36Goals Against Per Game3.84
28.95%Power Play Percentage28.95%
78.57%Penalty Kill Percentage68.38%
Canucks
19-21-6, 44pts
Day 59
Phantoms
23-13-9, 55pts
Team Stats
W4StreakSOL1
9-12-2Home Record14-4-5
10-9-4Away Record9-9-4
8-2-0Last 10 Games5-3-2
2.26Goals Per Game3.84
3.11Goals Against Per Game3.84
25.47%Power Play Percentage28.95%
72.64%Penalty Kill Percentage68.38%
Team Leaders
Cameron HebigGoals
Cameron Hebig
25
Cameron HebigAssists
Cameron Hebig
34
Cameron HebigPoints
Cameron Hebig
59
Plus/Minus
Mitchell Vande Sompel
15
Wins
Dylan Wells
13
Save Percentage
Dylan Wells
0.839

Team Stats
Goals For
173
3.84 GFG
Shots For
1262
28.04 Avg
Power Play Percentage
28.9%
44 GF
Offensive Zone Start
38.7%
Goals Against
164
3.64 GAA
Shots Against
1140
25.33 Avg
Penalty Kill Percentage
68.4%%
37 GA
Defensive Zone Start
32.2%
Team Info

General ManagerShareem Mallick
CoachJeff Blashill
DivisionDivision 5
ConferenceConference 2
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance2,921
Season Tickets1,500


Roster Info

Pro Team29
Farm Team19
Contract Limit48 / 100
Prospects157


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Cooper MarodyXX99.0072678165677173678168656359464663696302811,448,000$
2Nikita NesterenkoX99.007672836773707361735762625546466073610231925,000$
3Cameron HebigXXX100.0071658365657478637461626054464660766102731,014,000$
4Brian PinhoXX100.0074649665647479597160556148464657526002911,412,000$
5Bogdan Trineyev (R)X100.008074906176646854504756645146465681570221750,000$
6Ryder Korczak (R)X100.007063876364667052654753585046455554550221750,000$
7Curtis HallX100.008076876777525350634947634546455454550243993,000$
8Ryan Hofer (R)X100.007570906671565948614447604545455251540221750,000$
9Zach SolowXX100.005761456561606255695154515146465264540261874,000$
10Jamieson Rees (R)X100.0071658764676873486048445742464652665402331,238,000$
11Kyle BettsX100.007768986368606447604347614546465366540273961,000$
12Daniel D'Amato (R)X100.007166826767565851504751574846465361540233979,000$
13Logan Nijhoff (R)XX100.006868696468474847593851574844445219510233977,000$
14Declan CarlileX100.007469877170768252254743604146465442600241829,000$
15Jake LivingstoneX97.007977805977667150254241623845455174580253900,000$
16David Spacek (R)X100.007264896465626748253841593946464958560211750,000$
17Zachary Massicotte (R)X100.008381876182505344253239623745454940550233900,000$
18Dmitri OsipovX100.006674466574545743253339543745454625530282909,000$
Scratches
1Pavel Novak (R)X100.006861856761505052504456585344445720530221750,000$
2Anthony VincentXXX65.8272707565704443516450495946454553445302731,035,000$
3Riley Bezeau (R)X100.006468556068586149504647554544445120520223923,000$
4Riley McKayX100.006073306573545649504647534544445020510253973,000$
5Ian McKinnonX100.006672526072505147594246564444445020500263967,000$
6Mitchell Vande SompelX88.7877709365705963502539456341464652505802731,065,000$
7Matteo PietroniroX54.636569566569596247253841543945454941540263750,000$
8Bryan YoonX100.007565996765505242252841583945454928530263900,000$
TEAM AVERAGE96.32726977646960635150464959464545534955
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Isaac Poulter100.00574354676163586266633045455754580233934,000$
2Dylan Wells100.00504556725151485353523045455072520271787,992$
Scratches
1Strauss Mann100.00454455624444505347473044444759480263873,000$
TEAM AVERAGE100.0051445567525352565554304545516253
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Jeff Blashill40404040404040USA421750,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Cameron HebigPhantoms (PHI)C/LW/RW45253459-10423084871615912815.53%1799522.1113720261160001694046.15%1565121021.1904321234
2Cooper MarodyPhantoms (PHI)C/RW44203353-849258797149497813.42%1983819.06581322780001613060.43%6951614211.2613212424
3Nikita NesterenkoPhantoms (PHI)C4523305382759395132278317.42%784618.81791618971012423159.47%264337001.2523010345
4Bogdan TrineyevPhantoms (PHI)LW451915341343358257108395217.59%1591720.3930391040114613048.57%352014000.7412412242
5Brian PinhoPhantoms (PHI)C/RW3813162991010394472222818.06%950013.18481215450002290150.60%831313001.1600002304
6Jamieson ReesPhantoms (PHI)C4571522-2100553848143014.58%753911.98246231000001248.78%164104000.8200000111
7Jake LivingstonePhantoms (PHI)D4531720-41217586816626274.55%63115225.6226814125000071000%0924000.3500546001
8Daniel D'AmatoPhantoms (PHI)RW4512618-54715763476244115.79%1056712.61011249000002153.85%13104000.6300021220
9Kyle BettsPhantoms (PHI)C4597166101042243381327.27%945310.082575230001231343.02%8656000.7112011200
10David SpacekPhantoms (PHI)D4511415-1221066713824242.63%46105023.35134580000175000%0637000.2900101010
11Zach SolowPhantoms (PHI)C/RW457815-1300834063222311.11%452411.65134851000001072.22%18189000.5700000100
12Anthony VincentPhantoms (PHI)C/LW/RW39871522610382848113216.67%83428.7700003000081152.19%38965000.8800002022
13Mitchell Vande SompelPhantoms (PHI)D452121415353565794914244.08%3596821.52224470000159000%01417000.2900142000
14Ryder KorczakPhantoms (PHI)C365813-42810443844193011.36%443812.190225300000160055.98%20987000.5900101100
15Curtis HallPhantoms (PHI)C37491307755573631163412.90%754914.84101222000001041.94%6259000.4700335010
16Declan CarlilePhantoms (PHI)D1819101242029303510112.86%2745025.01145358000134000%01214000.4400121001
17Zachary MassicottePhantoms (PHI)D391910237254245155106.67%2368917.67022235000132000%0620000.2900131001
18Zachary BolducFlyersLW5369-4001872271513.64%412925.860334110001150044.44%3661001.3901000110
19Jakub ZborilFlyersD15178-4201031402414174.17%2340026.68022339000025000%039000.4000101000
20Klim KostinFlyersRW13415-32725211415121826.67%118013.8900004000000132.35%3421000.5500113001
21Ryan HoferPhantoms (PHI)C342242552411192710.53%11865.4900000000020040.35%5701000.4300001000
22Matteo PietroniroPhantoms (PHI)D34033218104124101160%1441512.23011230000024000%005000.1400011000
23Pavel NovakPhantoms (PHI)RW10000-200411100%1222.270000000000000%00000000000000
24Dmitri OsipovPhantoms (PHI)D15000-216101063100%31469.780000300001000%01000000011000
25Bryan YoonPhantoms (PHI)D20000000240000%01185.910000100005000%01200000000000
26Logan NijhoffPhantoms (PHI)C/LW1000000000000%011.720000000000000%00000000000000
Team Total or Average8481702684381072443012191031126243773113.47%3571342615.834470114151111611216663201053.93%2301255244230.65515242735222126
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Dylan WellsPhantoms (PHI)2713750.8393.6715220293577328400.800102520010
2Isaac PoulterPhantoms (PHI)209640.8753.5411710069553321300.5004200000
3Strauss MannPhantoms (PHI)11001.0000390001070000025000
Team Total or Average48231390.8583.56273302162114065670144545010


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Country Rookie Weight Height No Trade Available For Trade Acquired By Last Trade Date Force Waivers Waiver Possible Contract Contract Signature Date Force UFA Emergency Recall Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Salary Cap Year 2Salary Cap Year 3Salary Cap Year 4Salary Cap Year 5Salary Cap Year 6Salary Cap Year 7Salary Cap Year 8Salary Cap Year 9Salary Cap Year 10No Trade Year 2No Trade Year 3No Trade Year 4No Trade Year 5No Trade Year 6No Trade Year 7No Trade Year 8No Trade Year 9No Trade Year 10Link
Anthony VincentPhantoms (PHI)C/LW/RW271997-08-12USANo190 Lbs6 ft0NoNoN/ANoNo3FalseFalsePro & Farm1,035,000$543,814$0$0$No1,035,000$1,035,000$-------1,035,000$1,035,000$-------NoNo-------Link
Bogdan TrineyevPhantoms (PHI)LW222002-03-04RUSYes198 Lbs6 ft3NoNoN/ANoNo1FalseFalsePro & Farm750,000$394,068$0$0$No---------------------------
Brian PinhoPhantoms (PHI)C/RW291995-05-11USANo172 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm1,412,000$741,898$0$0$No---------------------------Link / NHL Link
Bryan YoonPhantoms (PHI)D261998-01-27USANo172 Lbs6 ft1NoNoFree AgentNoNo32024-10-16FalseFalsePro & Farm900,000$472,881$0$0$No900,000$900,000$-------900,000$900,000$-------NoNo-------Link
Cameron HebigPhantoms (PHI)C/LW/RW271997-01-21SKWNo183 Lbs5 ft10NoNoN/ANoNo3FalseFalsePro & Farm1,014,000$532,780$0$0$No1,014,000$1,014,000$-------1,014,000$1,014,000$-------NoNo-------Link / NHL Link
Cooper MarodyPhantoms (PHI)C/RW281996-12-20USANo184 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm1,448,000$760,814$0$0$No---------------------------Link / NHL Link
Curtis HallPhantoms (PHI)C242000-04-26USANo200 Lbs6 ft3NoNoN/ANoNo3FalseFalsePro & Farm993,000$521,746$0$0$No993,000$993,000$-------993,000$993,000$-------NoNo-------Link
Daniel D'AmatoPhantoms (PHI)RW232001-04-08ONTYes176 Lbs6 ft1NoNoN/ANoNo3FalseFalsePro & Farm979,000$514,390$0$0$No979,000$979,000$-------979,000$979,000$-------NoNo-------Link
David SpacekPhantoms (PHI)D212003-02-18USAYes174 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm750,000$394,068$0$0$No---------------------------
Declan CarlilePhantoms (PHI)D242000-05-18USANo189 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm829,000$435,576$0$0$No---------------------------Link
Dmitri OsipovPhantoms (PHI)D281996-10-04RUSNo193 Lbs6 ft4NoNoN/ANoNo2FalseFalsePro & Farm909,000$477,610$0$0$No909,000$--------909,000$--------No--------Link
Dylan WellsPhantoms (PHI)G271998-01-03ONTNo183 Lbs6 ft2NoNoN/ANoNo1FalseFalsePro & Farm787,992$414,030$0$0$No---------------------------Link
Ian McKinnonPhantoms (PHI)C261998-03-05ONTNo194 Lbs6 ft2NoNoN/ANoNo3FalseFalsePro & Farm967,000$508,085$0$0$No967,000$967,000$-------967,000$967,000$-------NoNo-------Link
Isaac PoulterPhantoms (PHI)G232001-09-12MANNo174 Lbs6 ft2NoNoN/ANoNo3FalseFalsePro & Farm934,000$490,746$0$0$No934,000$934,000$-------934,000$934,000$-------NoNo-------Link
Jake LivingstonePhantoms (PHI)D251999-04-16BCNo205 Lbs6 ft3NoNoFree AgentNoNo32024-10-16FalseFalsePro & Farm900,000$472,881$0$0$No900,000$900,000$-------900,000$900,000$-------NoNo-------Link
Jamieson ReesPhantoms (PHI)C232001-02-26ONTYes182 Lbs5 ft10NoNoN/ANoNo3FalseFalsePro & Farm1,238,000$650,475$0$0$No1,238,000$1,238,000$-------1,238,000$1,238,000$-------NoNo-------Link
Kyle BettsPhantoms (PHI)C271997-09-17ONTNo181 Lbs6 ft1NoNoN/ANoNo3FalseFalsePro & Farm961,000$504,932$0$0$No961,000$961,000$-------961,000$961,000$-------NoNo-------Link
Logan NijhoffPhantoms (PHI)C/LW232001-06-23BCYes187 Lbs6 ft0NoNoN/ANoNo3FalseFalsePro & Farm977,000$513,339$0$0$No977,000$977,000$-------977,000$977,000$-------NoNo-------Link
Matteo Pietroniro (Out of Payroll)Phantoms (PHI)D261998-10-20USANo185 Lbs6 ft1NoNoFree AgentNoNo32024-10-16FalseFalsePro & Farm750,000$394,068$0$0$Yes750,000$750,000$-------750,000$750,000$-------NoNo-------Link
Mitchell Vande SompelPhantoms (PHI)D271997-02-11ONTNo198 Lbs5 ft11NoNoN/ANoNo3FalseFalsePro & Farm1,065,000$559,576$0$0$No1,065,000$1,065,000$-------1,065,000$1,065,000$-------NoNo-------Link
Nikita NesterenkoPhantoms (PHI)C232001-09-10USANo194 Lbs6 ft2NoNoN/ANoNo1FalseFalsePro & Farm925,000$486,017$0$0$No---------------------------
Pavel NovakPhantoms (PHI)RW222002-04-16CZEYes170 Lbs5 ft9NoNoN/ANoNo1FalseFalsePro & Farm750,000$394,068$0$0$No---------------------------
Riley BezeauPhantoms (PHI)RW222002-05-04NBYes185 Lbs6 ft0NoNoN/ANoNo3FalseFalsePro & Farm923,000$484,966$0$0$No923,000$923,000$-------923,000$923,000$-------NoNo-------Link
Riley McKayPhantoms (PHI)LW251999-03-07MANNo203 Lbs6 ft0NoNoN/ANoNo3FalseFalsePro & Farm973,000$511,237$0$0$No973,000$973,000$-------973,000$973,000$-------NoNo-------Link
Ryan HoferPhantoms (PHI)C222002-05-10MANYes181 Lbs6 ft3NoNoN/ANoNo1FalseFalsePro & Farm750,000$394,068$0$0$No---------------------------
Ryder KorczakPhantoms (PHI)C222002-09-23SKWYes174 Lbs5 ft11NoNoN/ANoNo1FalseFalsePro & Farm750,000$394,068$0$0$No---------------------------
Strauss MannPhantoms (PHI)G261998-08-18USANo174 Lbs6 ft0NoNoN/ANoNo3FalseFalsePro & Farm873,000$458,695$0$0$No873,000$873,000$-------873,000$873,000$-------NoNo-------Link
Zach SolowPhantoms (PHI)C/RW261998-11-06USANo174 Lbs5 ft9NoNoN/ANoNo1FalseFalsePro & Farm874,000$459,220$0$0$No---------------------------Link
Zachary MassicottePhantoms (PHI)D232001-03-15QUEYes216 Lbs6 ft4NoNoFree AgentNoNo32024-10-16FalseFalsePro & Farm900,000$472,881$0$0$No900,000$900,000$-------900,000$900,000$-------NoNo-------Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2924.72186 Lbs6 ft12.21941,965$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Bogdan TrineyevNikita NesterenkoCameron Hebig40122
2Curtis HallCooper MarodyDaniel D'Amato30122
3Kyle BettsJamieson ReesNikita Nesterenko20122
4Ryder KorczakRyan HoferZach Solow10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Zachary MassicotteJake Livingstone40122
2David Spacek30122
3Declan CarlileJake Livingstone20122
4Jake Livingstone10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Bogdan TrineyevCameron HebigCooper Marody60122
2Daniel D'AmatoNikita NesterenkoZach Solow40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1David SpacekJake Livingstone60122
2Declan Carlile40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Cooper MarodyCameron Hebig60122
2Nikita NesterenkoBogdan Trineyev40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1David SpacekJake Livingstone60122
2Zachary Massicotte40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Cooper Marody60122Zachary MassicotteJake Livingstone60122
2Nikita Nesterenko40122David Spacek40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Cooper MarodyCameron Hebig60122
2Nikita NesterenkoBogdan Trineyev40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Zachary MassicotteJake Livingstone60122
2David Spacek40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Cameron HebigCooper MarodyKyle BettsJake Livingstone
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Cameron HebigCooper MarodyDaniel D'AmatoJake Livingstone
Extra Forwards
Normal PowerPlayPenalty Kill
Ryder Korczak, Curtis Hall, Zach SolowRyder Korczak, Curtis HallRyder Korczak
Extra Defensemen
Normal PowerPlayPenalty Kill
, David Spacek, Jake LivingstoneJake LivingstoneJake Livingstone,
Penalty Shots
Cooper Marody, Cameron Hebig, Nikita Nesterenko, Bogdan Trineyev, Ryder Korczak
Goalie
#1 : Isaac Poulter, #2 : Dylan Wells


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals1000010034-1000000000001000010034-110.50034700347459820355475416311884216350.00%20100.00%045487751.77%40972956.10%37866157.19%8643828484791022502
2Americans1010000026-4000000000001010000026-400.0002350034745983535547541631241215295120.00%5260.00%045487751.77%40972956.10%37866157.19%8643828484791022502
3Bears41100200161422100010010642010010068-240.5001629450034745981003554754163189253210213430.77%6266.67%045487751.77%40972956.10%37866157.19%8643828484791022502
4Bruins1010000038-5000000000001010000038-500.0003580034745982235547541631441444254125.00%7271.43%045487751.77%40972956.10%37866157.19%8643828484791022502
5Checkers21000100541210001005410000000000030.750591400347459859355475416313991475600.00%20100.00%045487751.77%40972956.10%37866157.19%8643828484791022502
6Crunch11000000651000000000001100000065121.0006915003474598413554754163127732323133.33%6266.67%045487751.77%40972956.10%37866157.19%8643828484791022502
7Eagles11000000752110000007520000000000021.00071017003474598483554754163140821266233.33%3233.33%045487751.77%40972956.10%37866157.19%8643828484791022502
8Griffins421001001818020100100812-422000000106450.6251830480034745981053554754163197276011716743.75%10640.00%145487751.77%40972956.10%37866157.19%8643828484791022502
9Heat2110000068-21010000025-31100000043120.500610160034745986135547541631361330616350.00%5340.00%045487751.77%40972956.10%37866157.19%8643828484791022502
10IceHogs11000000624000000000001100000062421.0006101600347459832355475416311235128300.00%3166.67%045487751.77%40972956.10%37866157.19%8643828484791022502
11Islanders513010002326-310001000431413000001923-440.400233255003474598166355475416311836610813216531.25%19668.42%045487751.77%40972956.10%37866157.19%8643828484791022502
12Marlies62101011161243110100065131000011107390.7501621370234745981173554754163187324512015320.00%10370.00%045487751.77%40972956.10%37866157.19%8643828484791022502
13Moose11000000624110000006240000000000021.000610160034745983535547541631231164323133.33%20100.00%045487751.77%40972956.10%37866157.19%8643828484791022502
14Reign320010001468210010007521100000071661.00014233700347459861355475416316015517114428.57%8187.50%045487751.77%40972956.10%37866157.19%8643828484791022502
15Roadrunners4120010079-2311001007701010000002-230.37571118003474598105355475416319035471426233.33%11281.82%045487751.77%40972956.10%37866157.19%8643828484791022502
16Senators10000010651100000106510000000000021.0006814003474598443554754163134711223133.33%3233.33%045487751.77%40972956.10%37866157.19%8643828484791022502
17Stars1010000045-1000000000001010000045-100.000481200347459842355475416313113433400.00%220.00%045487751.77%40972956.10%37866157.19%8643828484791022502
18Thunderbirds311001001415-121000100111011010000035-230.500142135003474598883554754163111828357215426.67%50100.00%045487751.77%40972956.10%37866157.19%8643828484791022502
19Wild10000010431100000104310000000000021.0004590034745981835547541631386424200.00%2150.00%045487751.77%40972956.10%37866157.19%8643828484791022502
20Wolf Pack11000000541110000005410000000000021.00057120034745983335547541631261250223266.67%50100.00%045487751.77%40972956.10%37866157.19%8643828484791022502
21Wolves1000000123-1000000000001000000123-110.5002350034745983035547541631246233300.00%10100.00%045487751.77%40972956.10%37866157.19%8643828484791022502
Total4517130373217316492394035208876122289002128588-3550.611173268441023474598126235547541631114035772412191524428.95%1173768.38%145487751.77%40972956.10%37866157.19%8643828484791022502
_Since Last GM Reset4517130373217316492394035208876122289002128588-3550.611173268441023474598126235547541631114035772412191524428.95%1173768.38%145487751.77%40972956.10%37866157.19%8643828484791022502
_Vs Conference381412037111411347208403500736491868002116870-2440.57914122136202347459810423554754163193530253010331313929.77%902967.78%145487751.77%40972956.10%37866157.19%8643828484791022502
_Vs Division16109035115658-2853034002526-1856001113132-1341.063568514102347459842335547541631352108221420521426.92%431760.47%145487751.77%40972956.10%37866157.19%8643828484791022502

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4555SOL117326844112621140357724121902
All Games
GPWLOTWOTL SOWSOLGFGA
4517133732173164
Home Games
GPWLOTWOTL SOWSOLGFGA
239435208876
Visitor Games
GPWLOTWOTL SOWSOLGFGA
228902128588
Last 10 Games
WLOTWOTL SOWSOL
530101
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1524428.95%1173768.38%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
355475416313474598
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
45487751.77%40972956.10%37866157.19%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
8643828484791022502


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
111Thunderbirds4Phantoms6WBoxScore
214Phantoms8Islanders4WBoxScore
334Phantoms3Marlies4LXXBoxScore
553Griffins8Phantoms5LBoxScore
665Phantoms0Roadrunners2LBoxScore
777Marlies3Phantoms1LBoxScore
892Phantoms2Bears3LXBoxScore
10114Roadrunners3Phantoms2LXBoxScore
11123Phantoms4Griffins2WBoxScore
12142Phantoms6Griffins4WBoxScore
13151Reign3Phantoms4WXBoxScore
14172Phantoms4Bears5LBoxScore
15185Islanders3Phantoms4WXBoxScore
17196Phantoms7Reign1WBoxScore
18211Phantoms2Islanders7LBoxScore
19226Bears2Phantoms1LXBoxScore
20244Marlies0Phantoms1WXBoxScore
21264Heat5Phantoms2LBoxScore
22274Phantoms3Thunderbirds5LBoxScore
24292Phantoms4Marlies3WXXBoxScore
25308Griffins4Phantoms3LXBoxScore
26324Phantoms3Admirals4LXBoxScore
27336Marlies2Phantoms4WBoxScore
28353Phantoms3Marlies0WBoxScore
30367Wild3Phantoms4WXXBoxScore
31386Phantoms3Bruins8LBoxScore
32398Moose2Phantoms6WBoxScore
34418Bears4Phantoms9WBoxScore
35431Phantoms6IceHogs2WBoxScore
36444Phantoms4Stars5LBoxScore
37459Wolf Pack4Phantoms5WBoxScore
40481Senators5Phantoms6WXXBoxScore
42508Roadrunners3Phantoms2LBoxScore
43525Phantoms4Heat3WBoxScore
44538Thunderbirds6Phantoms5LXBoxScore
45553Phantoms2Americans6LBoxScore
46561Phantoms4Islanders5LBoxScore
47577Reign2Phantoms3WBoxScore
48598Roadrunners1Phantoms3WBoxScore
49612Phantoms5Islanders7LBoxScore
50627Eagles5Phantoms7WBoxScore
52654Checkers3Phantoms2LXBoxScore
54670Phantoms6Crunch5WBoxScore
55689Checkers1Phantoms3WBoxScore
56703Phantoms2Wolves3LXXBoxScore
57715Phantoms-Gulls-
58725Condors-Phantoms-
59743Canucks-Phantoms-
62772Phantoms-Heat-
63784Wolves-Phantoms-
64802Admirals-Phantoms-
65816Phantoms-Reign-
67833Phantoms-Eagles-
68844Reign-Phantoms-
70869Silver Knights-Phantoms-
72889Phantoms-Reign-
73905Admirals-Phantoms-
74919Phantoms-Checkers-
75931Eagles-Phantoms-
77957Phantoms-Stars-
78963Griffins-Phantoms-
80991Rocket-Phantoms-
811011Islanders-Phantoms-
821017Phantoms-Comets-
841039Phantoms-Thunderbirds-
851051Phantoms-Bears-
861066Islanders-Phantoms-
871081Phantoms-Monsters-
881094Penguins-Phantoms-
891115Americans-Phantoms-
901126Phantoms-Thunderbirds-
911144Thunderbirds-Phantoms-
931159Phantoms-Barracuda-
941174Phantoms-Griffins-
951185Stars-Phantoms-
Trade Deadline --- Trades can’t be done after this day is simulated!
971210Heat-Phantoms-
981221Phantoms-Moose-
991239Americans-Phantoms-
1011263Phantoms-Penguins-
1021273Moose-Phantoms-
1041295Phantoms-Admirals-
1051305Wolf Pack-Phantoms-
1061318Phantoms-Checkers-
1071333Phantoms-Roadrunners-
1081340Bears-Phantoms-
1091356Phantoms-Penguins-
1101367Penguins-Phantoms-
1121385Phantoms-Americans-
1131390Phantoms-Roadrunners-
1141397Stars-Phantoms-
1151402Phantoms-Moose-
1161409Phantoms-Eagles-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price2510
Attendance44,52522,654
Attendance PCT96.79%98.50%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
23 2921 - 97.36% 86,787$1,996,101$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Salaries CapCoaches Salaries
1,652,686$ 2,731,699$ 2,731,699$ 750,000$0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
22,514$ 1,295,493$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
1,996,101$ 62 29,506$ 1,829,372$




Phantoms Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Phantoms Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Phantoms Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Phantoms Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Phantoms Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA