Login

Checkers
GP: 46 | W: 23 | L: 18 | OTL: 5 | P: 51
GF: 126 | GA: 138 | PP%: 29.60% | PK%: 76.52%
GM : Mikkel Aagaard | Morale : 52 | Team Overall : 61
Next Games #723 vs Reign
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Checkers
23-18-5, 51pts
1
FINAL
3 Phantoms
23-13-9, 55pts
Team Stats
W1StreakSOL1
9-11-3Home Record14-4-5
14-7-2Home Record9-9-4
5-4-1Last 10 Games5-3-2
2.74Goals Per Game3.84
3.00Goals Against Per Game3.64
29.60%Power Play Percentage28.95%
76.52%Penalty Kill Percentage68.38%
Stars
26-16-4, 56pts
3
FINAL
4 Checkers
23-18-5, 51pts
Team Stats
OTL1StreakW1
16-7-0Home Record9-11-3
10-9-4Home Record14-7-2
5-4-1Last 10 Games5-4-1
3.04Goals Per Game2.74
2.65Goals Against Per Game3.00
33.90%Power Play Percentage29.60%
77.17%Penalty Kill Percentage76.52%
Checkers
23-18-5, 51pts
Day 58
Reign
14-24-8, 36pts
Team Stats
W1StreakL3
9-11-3Home Record7-11-5
14-7-2Away Record7-13-3
5-4-1Last 10 Games3-7-0
2.74Goals Per Game2.59
3.00Goals Against Per Game2.59
29.60%Power Play Percentage27.27%
76.52%Penalty Kill Percentage64.29%
IceHogs
10-31-6, 26pts
Day 59
Checkers
23-18-5, 51pts
Team Stats
W1StreakW1
5-15-3Home Record9-11-3
5-16-3Away Record14-7-2
2-7-1Last 10 Games5-4-1
1.85Goals Per Game2.74
3.45Goals Against Per Game2.74
26.14%Power Play Percentage29.60%
66.96%Penalty Kill Percentage76.52%
Eagles
16-23-7, 39pts
Day 60
Checkers
23-18-5, 51pts
Team Stats
W2StreakW1
9-11-3Home Record9-11-3
7-12-4Away Record14-7-2
5-3-2Last 10 Games5-4-1
2.26Goals Per Game2.74
3.28Goals Against Per Game2.74
32.08%Power Play Percentage29.60%
77.60%Penalty Kill Percentage76.52%
Team Leaders
Conor ShearyGoals
Conor Sheary
22
Conor ShearyAssists
Conor Sheary
33
Conor ShearyPoints
Conor Sheary
55
Plus/Minus
Graeme Clarke
9
Wins
Jesper Vikman
22
Save Percentage
Jesper Vikman
0.871

Team Stats
Goals For
126
2.74 GFG
Shots For
975
21.20 Avg
Power Play Percentage
29.6%
37 GF
Offensive Zone Start
35.8%
Goals Against
138
3.00 GAA
Shots Against
1044
22.70 Avg
Penalty Kill Percentage
76.5%%
31 GA
Defensive Zone Start
37.7%
Team Info

General ManagerMikkel Aagaard
CoachBob Murray
DivisionDivision 4
ConferenceConference 2
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance2,207
Season Tickets1,500


Roster Info

Pro Team21
Farm Team27
Contract Limit48 / 100
Prospects87


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Conor ShearyX95.0061409382615887653468606753767963586503213,000,000$
2John Beecher (R)X100.008769866679578166905864792551516676650232925,000$
3Lane PedersonX99.0074708165707274688064696661565664746402721,172,000$
4Milan LucicX100.0087708372845997483964596125909162626403621,348,000$
5Vasily PodkolzinXX100.009947888070576269376358632561616168630231875,698$
6Pontus HolmbergXX100.007342906562598664566666692557576568630252827,500$
7Aatu Raty (R)X100.007670916171808564806263645946466476630222902,500$
8Shane Wright (R)X100.007772917773687063806063656145456657630213918,333$
9Graeme Clarke (R)XX100.0070638768648084648059666162454564756302331,260,000$
10Martin PospisilX100.009978557671636364426964612553536658630252941,000$
11John HaydenXXX100.0077807078807277567146576755656561516202911,300,000$
12Kyle CliffordX100.0064783664786466615056566554788258616103412,900,000$
13Zack Ostapchuk (R)X100.007777817578707455704660635845456163600213825,000$
14Brandon ScanlinX100.008180816180727850253846644446465369600252966,000$
15Adam WilsbyX100.007367896769758251254047604446465458590242842,500$
16Topi Niemela (R)X100.006660816661677155255144574345455462570221750,000$
17Lian Bichsel (R)X99.007283476484525251254840593945454969560201750,000$
18Josh WesleyX100.008276996476484944253438623745454964560281750,000$
19Chris HarpurX100.0081769160765051472539396337444451525602811,000,000$
Scratches
TEAM AVERAGE99.63786880697364735850545664445555606461
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Jesper Vikman (R)100.00604759726568616669663045455981610223858,000$
2Jesper Wallstedt (R)100.005852658360595462595830454556775902221,350,000$
Scratches
TEAM AVERAGE100.0059506278636458646462304545587960
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Bob Murray81745567646067CAN6811,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Conor ShearyCheckers (FLO)RW46223355-1610104497150417214.67%21101021.967111821891012551242.64%9854019011.0900020421
2Lane PedersonCheckers (FLO)C46222042-965258063108306120.37%1790519.68561119770113473266.67%782211100.9300113325
3Pontus HolmbergCheckers (FLO)C/LW44151732-17605855112275713.39%1391320.7742611800003563248.57%1751812000.7002000621
4John BeecherCheckers (FLO)C4691726-57250658257294915.79%1385418.57571210902024502061.71%3501317000.6112424131
5Aatu RatyCheckers (FLO)C461114256175594742191726.19%773015.8855109401011293152.86%7079000.6803100322
6Graeme ClarkeCheckers (FLO)C/RW4614102491410434470234520.00%768614.93404417000003058.97%391310000.7013002124
7Vasily PodkolzinCheckers (FLO)LW/RW421013230100494810632889.43%1777718.502468480113713138.29%1752711000.5901000232
8Milan LucicCheckers (FLO)RW4151722-1159255561659377.69%1984420.60191013720111360041.44%1111510000.5200104001
9Alex PetrovicPanthersD4531417-151346063725028256.00%46111424.7723510104011090000%0822000.3100435011
10Brandon ScanlinCheckers (FLO)D4611314-16834558844923202.04%56117325.511239101011197000%0829000.2400216002
11Martin PospisilCheckers (FLO)RW467714-45525735463334811.11%870715.3800016000000129.41%17176000.4001212002
12Adam WilsbyCheckers (FLO)D46358-2362028722771711.11%2694920.65112271000179100%0312000.1700004010
13Shane WrightCheckers (FLO)C43077-110103310177170%32445.69000000001190068.42%1951000.5700200000
14Topi NiemelaCheckers (FLO)D46066-649252956238100%3792420.09022171000182000%0529000.1300122000
15John HaydenCheckers (FLO)C/LW/RW41325-3403220126625.00%13217.85000080001243058.14%4344000.3100000001
16Lian BichselCheckers (FLO)D4603313915594515140%1872415.7500006000043000%0310000.0800102000
17Josh WesleyCheckers (FLO)D46022-15511267750%1064013.920000000004000%0116000.0600001000
18Zack OstapchukCheckers (FLO)C46000000310010%0170.370000000000000%00100000000000
19Kyle CliffordCheckers (FLO)LW46000-2115962000%01152.5200000000040033.33%31000000001000
20Chris HarpurCheckers (FLO)D1000000100000%088.720000000000000%00000000000000
Team Total or Average855125200325-9267933585294397533057912.82%3191366415.983752891188884592279522947.94%2065210229110.48212191236201823
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Jesper VikmanCheckers (FLO)46221750.8712.81258402121938486010.70010460220
2Jesper WallstedtCheckers (FLO)71100.8674.241980014105631000046000
Team Total or Average53231850.8712.91278202135104354911104646220


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Country Rookie Weight Height No Trade Available For Trade Acquired By Last Trade Date Force Waivers Waiver Possible Contract Contract Signature Date Force UFA Emergency Recall Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Salary Cap Year 2Salary Cap Year 3Salary Cap Year 4Salary Cap Year 5Salary Cap Year 6Salary Cap Year 7Salary Cap Year 8Salary Cap Year 9Salary Cap Year 10No Trade Year 2No Trade Year 3No Trade Year 4No Trade Year 5No Trade Year 6No Trade Year 7No Trade Year 8No Trade Year 9No Trade Year 10Link
Aatu RatyCheckers (FLO)C222002-11-14FINYes185 Lbs6 ft2NoNoN/ANoNo2FalseFalsePro & Farm902,500$474,195$0$0$No902,500$--------902,500$--------No--------Link
Adam WilsbyCheckers (FLO)D242000-07-08SWENo183 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm842,500$442,669$0$0$No842,500$--------842,500$--------No--------Link
Brandon ScanlinCheckers (FLO)D251999-06-02ONTNo213 Lbs6 ft4NoNoN/ANoNo2FalseFalsePro & Farm966,000$507,559$0$0$No966,000$--------966,000$--------No--------Link
Chris HarpurCheckers (FLO)D281996-09-13ONTNo201 Lbs6 ft3NoNoAssign ManuallyNoNo12025-01-20FalseFalsePro & Farm1,000,000$525,424$0$0$No---------------------------Link
Conor ShearyCheckers (FLO)RW321992-06-08USANo178 Lbs5 ft8NoNoN/ANoNo1FalseFalsePro & Farm3,000,000$1,576,271$0$0$No---------------------------Link / NHL Link
Graeme ClarkeCheckers (FLO)C/RW232001-04-24USAYes174 Lbs5 ft11NoNoN/ANoNo3FalseFalsePro & Farm1,260,000$662,034$0$0$No1,260,000$1,260,000$-------1,260,000$1,260,000$-------NoNo-------Link
Jesper VikmanCheckers (FLO)G222002-03-11SWEYes179 Lbs6 ft3NoNoN/ANoNo3FalseFalsePro & Farm858,000$450,814$0$0$No858,000$858,000$-------858,000$858,000$-------NoNo-------
Jesper WallstedtCheckers (FLO)G222002-11-14SWEYes213 Lbs6 ft3NoNoN/ANoNo2FalseFalsePro & Farm1,350,000$709,322$0$0$No1,350,000$--------1,350,000$--------No--------Link
John BeecherCheckers (FLO)C232001-05-04USAYes209 Lbs6 ft3NoNoN/ANoNo2FalseFalsePro & Farm925,000$486,017$0$0$No925,000$--------925,000$--------No--------Link
John HaydenCheckers (FLO)C/LW/RW291995-02-14USANo216 Lbs6 ft3NoNoN/ANoNo1FalseFalsePro & Farm1,300,000$683,051$0$0$No---------------------------Link / NHL Link
Josh WesleyCheckers (FLO)D281996-04-09USANo200 Lbs6 ft3NoNoN/ANoNo1FalseFalsePro & Farm750,000$394,068$0$0$No---------------------------Link
Kyle CliffordCheckers (FLO)LW341991-01-13ONTNo211 Lbs6 ft2NoNoFree AgentNoNo12024-10-16FalseFalsePro & Farm2,900,000$1,523,729$0$0$No---------------------------Link / NHL Link
Lane PedersonCheckers (FLO)C271997-08-04SKWNo190 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm1,172,000$615,797$0$0$No1,172,000$--------1,172,000$--------No--------Link / NHL Link
Lian BichselCheckers (FLO)D202004-05-18SWIYes216 Lbs6 ft6NoNoN/ANoNo1FalseFalsePro & Farm750,000$394,068$0$0$No---------------------------
Martin PospisilCheckers (FLO)RW251999-11-19SVKNo180 Lbs6 ft2NoNoN/ANoNo2FalseFalsePro & Farm941,000$494,424$0$0$No941,000$--------941,000$--------No--------Link
Milan LucicCheckers (FLO)RW361988-06-07BCNo231 Lbs6 ft3NoNoN/ANoNo2FalseFalsePro & Farm1,348,000$708,271$0$0$No1,348,000$--------750,000$--------No--------Link / NHL Link
Pontus HolmbergCheckers (FLO)C/LW251999-09-03SWENo174 Lbs5 ft10NoNoN/ANoNo2FalseFalsePro & Farm827,500$434,788$0$0$No827,500$--------827,500$--------No--------Link
Shane WrightCheckers (FLO)C212004-01-05ONTYes198 Lbs6 ft1NoNoN/ANoNo3FalseFalsePro & Farm918,333$482,514$0$0$No918,333$918,333$-------918,333$918,333$-------NoNo-------
Topi NiemelaCheckers (FLO)D222002-03-25FINYes160 Lbs5 ft11NoNoN/ANoNo1FalseFalsePro & Farm750,000$394,068$0$0$No---------------------------
Vasily PodkolzinCheckers (FLO)LW/RW232001-06-24RUSNo189 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm875,698$460,113$0$0$No---------------------------Link
Zack OstapchukCheckers (FLO)C212003-05-29ABYes202 Lbs6 ft4NoNoN/ANoNo3FalseFalsePro & Farm825,000$433,475$0$0$No825,000$825,000$-------825,000$825,000$-------NoNo-------
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2125.33195 Lbs6 ft21.811,164,835$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Pontus HolmbergConor ShearyLane Pederson40122
2Vasily PodkolzinJohn BeecherMartin Pospisil30122
3John BeecherConor ShearyLane Pederson20122
4Aatu RatyConor ShearyGraeme Clarke10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Lian BichselBrandon Scanlin40122
2Adam WilsbyTopi Niemela30122
3Josh WesleyLian Bichsel20122
4Adam WilsbyBrandon Scanlin10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1John BeecherConor ShearyGraeme Clarke60122
2Aatu RatyLane PedersonMartin Pospisil40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Lian BichselBrandon Scanlin60122
2Adam WilsbyTopi Niemela40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Aatu RatyLane Pederson60122
2John BeecherConor Sheary40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Brandon ScanlinJosh Wesley60122
2Topi NiemelaAdam Wilsby40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1John Beecher60122Brandon ScanlinAdam Wilsby60122
2Martin Pospisil40122Lian BichselJosh Wesley40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1John BeecherLane Pederson60122
2Graeme ClarkeConor Sheary40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Adam WilsbyBrandon Scanlin60122
2Josh WesleyLian Bichsel40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Lane PedersonConor ShearyJohn BeecherAdam WilsbyBrandon Scanlin
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Lane PedersonConor ShearyJohn BeecherAdam WilsbyBrandon Scanlin
Extra Forwards
Normal PowerPlayPenalty Kill
John Beecher, Graeme Clarke, Aatu RatyLane Pederson, John BeecherJohn Beecher
Extra Defensemen
Normal PowerPlayPenalty Kill
Brandon Scanlin, Topi Niemela, Adam WilsbyBrandon ScanlinTopi Niemela, Brandon Scanlin
Penalty Shots
Conor Sheary, Graeme Clarke, Aatu Raty, John Beecher, Lane Pederson
Goalie
#1 : Jesper Vikman, #2 : Jesper Wallstedt


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals3300000014311110000008082200000063361.00014233701244945968236383339284725346410550.00%7185.71%036172949.52%36476647.52%26553949.17%8383418404951105553
2Americans42200000131212110000067-12110000075240.500132033002449459952363833392811437917510330.00%13284.62%136172949.52%36476647.52%26553949.17%8383418404951105553
3Comets1010000003-31010000003-30000000000000.0000000024494591923638333928831115200.00%3233.33%036172949.52%36476647.52%26553949.17%8383418404951105553
4Condors1000000145-1000000000001000000145-110.5004812002449459202363833392820710304125.00%5180.00%036172949.52%36476647.52%26553949.17%8383418404951105553
5Eagles200011005501000010023-11000100032130.750510150024494594223638333928311440358225.00%5180.00%036172949.52%36476647.52%26553949.17%8383418404951105553
6Heat31100100911-22010010036-31100000065130.50091423002449459522363833392858938629444.44%8362.50%036172949.52%36476647.52%26553949.17%8383418404951105553
7Islanders20200000611-520200000611-50000000000000.00068140024494595923638333928891852304125.00%6350.00%036172949.52%36476647.52%26553949.17%8383418404951105553
8Marlies32100000981110000004222110000056-140.667913220024494593323638333928532438467228.57%9366.67%136172949.52%36476647.52%26553949.17%8383418404951105553
9Monsters1010000036-3000000000001010000036-300.00035800244945925236383339282882610200.00%3166.67%036172949.52%36476647.52%26553949.17%8383418404951105553
10Moose62201001141313110100010823110000145-170.58314243800244945912323638333928110389912018316.67%18477.78%036172949.52%36476647.52%26553949.17%8383418404951105553
11Penguins512010101213-12010001045-13110100088060.6001216281024494591212363833392894265110915640.00%13376.92%036172949.52%36476647.52%26553949.17%8383418404951105553
12Phantoms2010100045-1000000000002010100045-120.5004610002449459392363833392859123238200.00%60100.00%136172949.52%36476647.52%26553949.17%8383418404951105553
13Reign10001000211000000000001000100021121.00023500244945914236383339282234122150.00%20100.00%036172949.52%36476647.52%26553949.17%8383418404951105553
14Roadrunners22000000734110000004131100000032141.00071017002449459482363833392849935395480.00%5180.00%036172949.52%36476647.52%26553949.17%8383418404951105553
15Silver Knights10001000211100010002110000000000021.0002460024494592623638333928177612100.00%30100.00%036172949.52%36476647.52%26553949.17%8383418404951105553
16Stars521011001416-230101100813-52200000063370.70014233701244945998236383339289038648411327.27%17476.47%036172949.52%36476647.52%26553949.17%8383418404951105553
17Thunderbirds20200000511-620200000511-60000000000000.00057120024494595223638333928872928429222.22%40100.00%036172949.52%36476647.52%26553949.17%8383418404951105553
18Wild1010000015-4000000000001010000015-400.0001230024494592123638333928399817100.00%4250.00%036172949.52%36476647.52%26553949.17%8383418404951105553
19Wolves1010000026-41010000026-40000000000000.00024600244945920236383339282931212500.00%10100.00%136172949.52%36476647.52%26553949.17%8383418404951105553
Total46151807312126138-1223511033106477-13231070400262611510.5541262003261224494599752363833392810443196798521253729.60%1323176.52%436172949.52%36476647.52%26553949.17%8383418404951105553
_Since Last GM Reset46151807312126138-1223511033106477-13231070400262611510.5541262003261224494599752363833392810443196798521253729.60%1323176.52%436172949.52%36476647.52%26553949.17%8383418404951105553
_Vs Conference4015140631111411222059023106067-7201050400154459480.600114177291122449459844236383339289032826067561103632.73%1132577.88%336172949.52%36476647.52%26553949.17%8383418404951105553
_Vs Division12118043112744-17635023101225-13683020011519-4361.500273966102449459283236383339283077018421430723.33%32971.88%236172949.52%36476647.52%26553949.17%8383418404951105553

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4651W1126200326975104431967985212
All Games
GPWLOTWOTL SOWSOLGFGA
4615187312126138
Home Games
GPWLOTWOTL SOWSOLGFGA
2351133106477
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2310740026261
Last 10 Games
WLOTWOTL SOWSOL
540100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1253729.60%1323176.52%4
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
236383339282449459
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
36172949.52%36476647.52%26553949.17%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
8383418404951105553


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
15Eagles3Checkers2LXBoxScore
326Checkers4Stars3WBoxScore
441Stars6Checkers1LBoxScore
666Americans1Checkers5WBoxScore
782Checkers4Admirals2WBoxScore
890Checkers6Heat5WBoxScore
9107Thunderbirds8Checkers4LBoxScore
11126Checkers1Moose2LXXBoxScore
12137Penguins4Checkers2LBoxScore
13156Moose3Checkers5WBoxScore
15174Checkers1Penguins4LBoxScore
16188Admirals0Checkers8WBoxScore
17210Checkers3Moose1WBoxScore
18220Heat4Checkers2LBoxScore
19231Checkers3Roadrunners2WBoxScore
20251Thunderbirds3Checkers1LBoxScore
21261Checkers3Eagles2WXBoxScore
22279Islanders2Checkers1LBoxScore
23283Checkers5Americans1WBoxScore
25311Checkers1Wild5LBoxScore
26322Checkers2Reign1WXBoxScore
27333Wolves6Checkers2LBoxScore
28351Silver Knights1Checkers2WXBoxScore
30369Checkers4Condors5LXXBoxScore
31385Islanders9Checkers5LBoxScore
33404Heat2Checkers1LXBoxScore
34413Checkers4Penguins3WXBoxScore
35424Checkers2Marlies5LBoxScore
36445Checkers3Marlies1WBoxScore
37458Marlies2Checkers4WBoxScore
39474Penguins1Checkers2WXXBoxScore
40490Checkers3Monsters6LBoxScore
42502Checkers2Admirals1WBoxScore
43519Americans6Checkers1LBoxScore
44536Checkers3Penguins1WBoxScore
45548Moose3Checkers2LBoxScore
46566Stars4Checkers3LXBoxScore
47579Checkers2Stars0WBoxScore
48594Checkers0Moose2LBoxScore
49609Roadrunners1Checkers4WBoxScore
50628Moose2Checkers3WXBoxScore
51642Checkers2Americans4LBoxScore
52654Checkers3Phantoms2WXBoxScore
54669Comets3Checkers0LBoxScore
55689Checkers1Phantoms3LBoxScore
56701Stars3Checkers4WXBoxScore
58723Checkers-Reign-
59736IceHogs-Checkers-
60755Eagles-Checkers-
62773Checkers-Bears-
63783Checkers-Islanders-
64797Bruins-Checkers-
65812Checkers-Wolf Pack-
66828Reign-Checkers-
68847Checkers-Griffins-
69858Americans-Checkers-
70876Reign-Checkers-
72892Checkers-Eagles-
73907Checkers-Islanders-
74919Phantoms-Checkers-
76936Checkers-Stars-
77950Barracuda-Checkers-
78971Marlies-Checkers-
80994Griffins-Checkers-
821018Checkers-Bears-
831029Eagles-Checkers-
841048Checkers-Rocket-
851061Crunch-Checkers-
861073Checkers-Gulls-
871091Canucks-Checkers-
881105Checkers-Eagles-
891118Checkers-Admirals-
911134Heat-Checkers-
921154Thunderbirds-Checkers-
931166Checkers-Rocket-
951187Penguins-Checkers-
961199Checkers-Canucks-
Trade Deadline --- Trades can’t be done after this day is simulated!
971217Griffins-Checkers-
981229Checkers-Thunderbirds-
1001248Roadrunners-Checkers-
1011268Checkers-Heat-
1021276Admirals-Checkers-
1041299Checkers-Roadrunners-
1051304Checkers-Thunderbirds-
1061318Phantoms-Checkers-
1071336Checkers-Senators-
1081343Checkers-Americans-
1091351Admirals-Checkers-
1121379Bears-Checkers-
1141401Bears-Checkers-
1151405Checkers-Griffins-
1161420Checkers-Heat-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3515
Attendance32,92617,824
Attendance PCT71.58%77.50%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
23 2207 - 73.55% 91,976$2,115,458$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Salaries CapCoaches Salaries
1,635,480$ 2,446,153$ 2,386,353$ 1,000,000$0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
20,730$ 1,160,880$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
2,115,458$ 62 29,205$ 1,810,710$




Checkers Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Checkers Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Checkers Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Checkers Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Checkers Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA