Login

Checkers
GP: 92 | W: 46 | L: 33 | OTL: 13 | P: 105
GF: 234 | GA: 262 | PP%: 31.00% | PK%: 75.10%
GM : Mikkel Aagaard | Morale : 51 | Team Overall : 59
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Checkers
46-33-13, 105pts
2
FINAL
3 Griffins
49-35-8, 106pts
Team Stats
OTL1StreakL1
21-18-7Home Record26-15-5
25-15-6Home Record23-20-3
3-2-5Last 10 Games4-6-0
2.54Goals Per Game3.08
2.85Goals Against Per Game3.07
31.00%Power Play Percentage31.33%
75.10%Penalty Kill Percentage70.68%
Checkers
46-33-13, 105pts
4
FINAL
5 Heat
45-27-20, 110pts
Team Stats
OTL1StreakW1
21-18-7Home Record22-14-10
25-15-6Home Record23-13-10
3-2-5Last 10 Games6-4-0
2.54Goals Per Game2.72
2.85Goals Against Per Game2.68
31.00%Power Play Percentage32.69%
75.10%Penalty Kill Percentage70.67%
Team Leaders
Lane PedersonGoals
Lane Pederson
34
Lane PedersonAssists
Lane Pederson
44
Lane PedersonPoints
Lane Pederson
78
Plus/Minus
Lian Bichsel
4

Team Stats
Goals For
234
2.54 GFG
Shots For
1755
19.08 Avg
Power Play Percentage
31.0%
71 GF
Offensive Zone Start
35.0%
Goals Against
262
2.85 GAA
Shots Against
1990
21.63 Avg
Penalty Kill Percentage
75.1%%
61 GA
Defensive Zone Start
38.2%
Team Info

General ManagerMikkel Aagaard
CoachBob Murray
DivisionDivision 4
ConferenceConference 2
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance2,224
Season Tickets1,500


Roster Info

Pro Team30
Farm Team19
Contract Limit49 / 100
Prospects87


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Lane PedersonX100.0075708065707274698066696561575762766502721,172,000$
2John Beecher (R)X100.008769866780578167915966782552526481650232925,000$
3Vasily PodkolzinXX100.009947888272576269376358612562626071640231875,698$
4Milan LucicX100.0087708271835997493965585925919261746403621,348,000$
5Pontus HolmbergXX100.007342916663598664566567682558586375630252827,500$
6Aatu Raty (R)X100.007670926272808563806262625948486374630222902,500$
7Graeme Clarke (R)XX100.0070638770668084648059665962474763746302431,260,000$
8Martin PospisilX100.009978567671636364426964612554546545630252941,000$
9John HaydenXXX100.0076807178807277557145566655676759636203011,300,000$
10Zack Ostapchuk (R)X100.007777817679707454704559625846466073600213825,000$
11Kyle CliffordX100.0064783764786466595055556454808456746003412,900,000$
12Joona KoppanenXX100.007875896375758154655648644545455621580271965,000$
13Olen Zellweger (R)X100.006541968164787275256354692549496036650213844,167$
14Mark FriedmanX100.0079747573695958602542476725565757516102911,000,000$
15Brandon ScanlinX100.008180816281727851253947644447475175610252966,000$
16Adam WilsbyX100.007367906870758250253947584447475267590242842,500$
17Josh WesleyX100.008176996476484944253338613747464856550291750,000$
Scratches
1Shane Wright (R)X100.007672917874687063806062646146466558630213918,333$
2Luke HenmanX100.006962846662687254684756595344445818560241775,615$
3Josiah SlavinX100.0067618165617784536649535850444457185602631,065,000$
4Tyce ThompsonX100.0068667262667177515051465844444454185502531,007,000$
5Samuel LabergeX100.007276646876636751645048604644445518550282974,000$
6C.J. SuessX100.0075698862696873515047516148444457185503111,200,000$
7Brett Harrison (R)X100.007870956070586150634848634644445618540211750,000$
8Daylan Kuefler (R)X100.006671536471525352504753575044445418530231750,000$
9Topi Niemela (R)X100.006560816762677154255045564347475359570231750,000$
10Lian Bichsel (R)X100.007283466585525252254841593946464941560201750,000$
11Chris HarpurX100.0080769160765051472538396237454550485502811,000,000$
TEAM AVERAGE100.00766980687266715752525462435252575160
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Jesper Wallstedt (R)100.005852658360625564615830464555796002221,350,000$
2Dylan Garand (R)100.00495063624950505450513044445128510222902,500$
Scratches
TEAM AVERAGE100.0054516473555653595655304545535456
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Bob Murray81745567646067CAN6811,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Lane PedersonCheckers (FLO)C92344478-18173751491432167112315.74%37193521.03814223014202241174364.41%2224329100.8112537457
2John BeecherCheckers (FLO)C92313566-109470139163143528821.68%30183219.921513283616620291067361.65%7172631010.7215824864
3Conor ShearyPanthersRW54224062-19121051112172488112.79%22118822.0171421231051013591242.09%11574421011.0400020421
4Pontus HolmbergCheckers (FLO)C/LW90322355-231001101221985711716.16%35181820.2042611890004916348.69%2674230000.60020001162
5Vasily PodkolzinCheckers (FLO)LW/RW88182947-3275119118189601399.52%27166618.9424686901151135135.96%2675124000.5602010345
6Milan LucicCheckers (FLO)RW8793847-181265011710211017698.18%26158918.2722022291360111360044.25%6961723000.5915217114
7Graeme ClarkeCheckers (FLO)C/RW92251944-11261010494127398319.69%13150716.3910616281000002225162.50%723716100.58410002235
8Aatu RatyCheckers (FLO)C92132336-419511112065303520.00%13159417.3369151510710121243154.09%2811117000.4529100322
9Martin PospisilCheckers (FLO)RW85141731-4812514099117487711.97%17130015.30448939000000348.00%253219000.4813212323
10Brandon ScanlinCheckers (FLO)D9252429-15137751241688737405.75%116234825.532911171910112189200%01458000.2500339005
11Olen ZellwegerCheckers (FLO)D377202720027757834488.97%5297826.45459859101375000%02319000.5500000123
12Alex PetrovicPanthersD4531417-151346063725028256.00%46111424.7723510104011090000%0822000.3100435011
13Shane WrightCheckers (FLO)C75213151151555463910295.13%106238.320111170001191065.25%118143000.4800201010
14Adam WilsbyCheckers (FLO)D925914-254820761285818328.62%63202322.0012341340002144200%01032000.1401004020
15Topi NiemelaCheckers (FLO)D922911-267230671014320194.65%64189720.6322461300002150100%0943000.1200132002
16John HaydenCheckers (FLO)C/LW/RW87448-1140656220121520.00%78309.550000110001344059.21%76911000.1900000011
17Lian BichselCheckers (FLO)D6225747230886624798.33%25103916.77213337000050000%0517000.1300303001
18Kyle CliffordCheckers (FLO)LW922130275311470128.57%03263.5500000000071033.33%312000.1800001100
19Josh WesleyCheckers (FLO)D80033-2101017447750%1593911.7400000000019000%0120000.0600011000
20Mark FriedmanCheckers (FLO)D33011110020355560%1255716.910000100009000%036000.0400000000
21Zack OstapchukCheckers (FLO)C9201120018120110%01301.4200000000000061.54%1301000.1500000000
22Joona KoppanenCheckers (FLO)C/LW37000100100000%0200.550000000000000%00000000000000
23Chris HarpurCheckers (FLO)D25000000630000%01385.550000000002000%00000000000000
Team Total or Average1713230372602-1831107495169818991755601104213.11%6302740316.007110918023816475611411469421749.72%3914400444220.441039312048413846
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Jesper VikmanPanthers67352460.8732.773789241751379708320.72218670231
2Jesper WallstedtCheckers (FLO)3411970.8742.5017302372570320220.588172567120
3Dylan GarandCheckers (FLO)20000.8655.006000537260000025000
Team Total or Average1034633130.8732.715580472521986105454359292351


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Country Rookie Weight Height No Trade Available For Trade Acquired By Last Trade Date Force Waivers Waiver Possible Contract Contract Signature Date Force UFA Emergency Recall Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Salary Cap Year 2Salary Cap Year 3Salary Cap Year 4Salary Cap Year 5Salary Cap Year 6Salary Cap Year 7Salary Cap Year 8Salary Cap Year 9Salary Cap Year 10No Trade Year 2No Trade Year 3No Trade Year 4No Trade Year 5No Trade Year 6No Trade Year 7No Trade Year 8No Trade Year 9No Trade Year 10Link
Aatu RatyCheckers (FLO)C222002-11-14FINYes185 Lbs6 ft2NoNoN/ANoNo2FalseFalsePro & Farm902,500$0$0$No902,500$--------902,500$--------No--------Link
Adam WilsbyCheckers (FLO)D242000-07-08SWENo183 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm842,500$0$0$No842,500$--------842,500$--------No--------Link
Brandon ScanlinCheckers (FLO)D251999-06-02ONTNo213 Lbs6 ft4NoNoN/ANoNo2FalseFalsePro & Farm966,000$0$0$No966,000$--------966,000$--------No--------Link
Brett HarrisonCheckers (FLO)C212003-07-07ONTYes188 Lbs6 ft2NoNoN/ANoNo1FalseFalsePro & Farm750,000$0$0$No---------------------------
C.J. SuessCheckers (FLO)LW311994-03-16USANo190 Lbs5 ft11NoNoN/ANoNo1FalseFalsePro & Farm1,200,000$0$0$No---------------------------Link / NHL Link
Chris HarpurCheckers (FLO)D281996-09-13ONTNo201 Lbs6 ft3NoNoAssign ManuallyNoNo12025-01-20FalseFalsePro & Farm1,000,000$0$0$No---------------------------Link
Daylan KueflerCheckers (FLO)LW232002-02-10ABYes192 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm750,000$0$0$No---------------------------
Dylan GarandCheckers (FLO)G222002-07-06BCYes173 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm902,500$0$0$No902,500$--------902,500$--------No--------Link
Graeme ClarkeCheckers (FLO)C/RW242001-04-24USAYes174 Lbs5 ft11NoNoN/ANoNo3FalseFalsePro & Farm1,260,000$0$0$No1,260,000$1,260,000$-------1,260,000$1,260,000$-------NoNo-------Link
Jesper WallstedtCheckers (FLO)G222002-11-14SWEYes213 Lbs6 ft3NoNoN/ANoNo2FalseFalsePro & Farm1,350,000$0$0$No1,350,000$--------1,350,000$--------No--------Link
John BeecherCheckers (FLO)C232001-05-04USAYes209 Lbs6 ft3NoNoN/ANoNo2FalseFalsePro & Farm925,000$0$0$No925,000$--------925,000$--------No--------Link
John HaydenCheckers (FLO)C/LW/RW301995-02-14USANo216 Lbs6 ft3NoNoN/ANoNo1FalseFalsePro & Farm1,300,000$0$0$No---------------------------Link / NHL Link
Joona KoppanenCheckers (FLO)C/LW271998-02-25FINNo194 Lbs6 ft5NoNoN/ANoNo1FalseFalsePro & Farm965,000$0$0$No---------------------------Link / NHL Link
Josh WesleyCheckers (FLO)D291996-04-09USANo200 Lbs6 ft3NoNoN/ANoNo1FalseFalsePro & Farm750,000$0$0$No---------------------------Link
Josiah SlavinCheckers (FLO)C261998-12-31USANo161 Lbs6 ft0NoNoN/ANoNo3FalseFalsePro & Farm1,065,000$0$0$No1,065,000$1,065,000$-------1,065,000$1,065,000$-------NoNo-------Link
Kyle CliffordCheckers (FLO)LW341991-01-13ONTNo211 Lbs6 ft2NoNoFree AgentNoNo12024-10-16FalseFalsePro & Farm2,900,000$0$0$No---------------------------Link / NHL Link
Lane PedersonCheckers (FLO)C271997-08-04SKWNo190 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm1,172,000$0$0$No1,172,000$--------1,172,000$--------No--------Link / NHL Link
Lian BichselCheckers (FLO)D202004-05-18SWIYes216 Lbs6 ft6NoNoN/ANoNo1FalseFalsePro & Farm750,000$0$0$No---------------------------
Luke HenmanCheckers (FLO)C242000-04-29NSNo168 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm775,615$0$0$No---------------------------Link
Mark FriedmanCheckers (FLO)D291995-12-25ONTNo185 Lbs5 ft11NoNoAssign ManuallyNoNo12025-02-17FalseFalsePro & Farm1,000,000$0$0$No---------------------------Link / NHL Link
Martin PospisilCheckers (FLO)RW251999-11-19SVKNo180 Lbs6 ft2NoNoN/ANoNo2FalseFalsePro & Farm941,000$0$0$No941,000$--------941,000$--------No--------Link
Milan LucicCheckers (FLO)RW361988-06-07BCNo231 Lbs6 ft3NoNoN/ANoNo2FalseFalsePro & Farm1,348,000$0$0$No1,348,000$--------750,000$--------No--------Link / NHL Link
Olen ZellwegerCheckers (FLO)D212003-09-10ABYes174 Lbs5 ft10NoNoN/ANoNo3FalseFalsePro & Farm844,167$0$0$No844,167$844,167$-------844,167$844,167$-------NoNo-------
Pontus HolmbergCheckers (FLO)C/LW251999-09-03SWENo174 Lbs5 ft10NoNoN/ANoNo2FalseFalsePro & Farm827,500$0$0$No827,500$--------827,500$--------No--------Link
Samuel LabergeCheckers (FLO)C281997-04-10QUENo205 Lbs6 ft2NoNoN/ANoNo2FalseFalsePro & Farm974,000$0$0$No974,000$--------974,000$--------No--------Link
Shane WrightCheckers (FLO)C212004-01-05ONTYes198 Lbs6 ft1NoNoN/ANoNo3FalseFalsePro & Farm918,333$0$0$No918,333$918,333$-------918,333$918,333$-------NoNo-------
Topi NiemelaCheckers (FLO)D232002-03-25FINYes160 Lbs5 ft11NoNoN/ANoNo1FalseFalsePro & Farm750,000$0$0$No---------------------------
Tyce ThompsonCheckers (FLO)RW251999-07-11ABNo178 Lbs6 ft1NoNoN/ANoNo3FalseFalsePro & Farm1,007,000$0$0$No1,007,000$1,007,000$-------1,007,000$1,007,000$-------NoNo-------Link
Vasily PodkolzinCheckers (FLO)LW/RW232001-06-24RUSNo189 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm875,698$0$0$No---------------------------Link
Zack OstapchukCheckers (FLO)C212003-05-29ABYes202 Lbs6 ft4NoNoN/ANoNo3FalseFalsePro & Farm825,000$0$0$No825,000$825,000$-------825,000$825,000$-------NoNo-------
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3025.30192 Lbs6 ft11.771,027,894$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Pontus HolmbergMilan LucicLane Pederson40122
2Vasily PodkolzinJohn BeecherMartin Pospisil30122
3John BeecherVasily PodkolzinLane Pederson20122
4Aatu RatyLane PedersonGraeme Clarke10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Olen ZellwegerBrandon Scanlin40122
2Adam Wilsby30122
3Olen ZellwegerMark Friedman20122
4Adam WilsbyBrandon Scanlin10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1John BeecherMilan LucicGraeme Clarke60122
2Aatu RatyLane PedersonVasily Podkolzin40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Olen ZellwegerBrandon Scanlin60122
2Adam Wilsby40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Aatu RatyLane Pederson60122
2John BeecherGraeme Clarke40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Brandon ScanlinOlen Zellweger60122
2Adam Wilsby40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1John Beecher60122Brandon ScanlinAdam Wilsby60122
2Lane Pederson40122Mark Friedman40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1John BeecherLane Pederson60122
2Graeme ClarkeAatu Raty40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Adam WilsbyBrandon Scanlin60122
2Olen Zellweger40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Lane PedersonMilan LucicJohn BeecherAdam WilsbyBrandon Scanlin
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Lane PedersonMilan LucicJohn BeecherAdam WilsbyBrandon Scanlin
Extra Forwards
Normal PowerPlayPenalty Kill
John Beecher, Graeme Clarke, Aatu RatyLane Pederson, John BeecherJohn Beecher
Extra Defensemen
Normal PowerPlayPenalty Kill
Brandon Scanlin, , Adam WilsbyBrandon Scanlin, Brandon Scanlin
Penalty Shots
Milan Lucic, Graeme Clarke, Aatu Raty, John Beecher, Lane Pederson
Goalie
#1 : Jesper Wallstedt, #2 : Dylan Garand


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals63100101191273100010193632100000109180.667193049114976952011740865565969102358311716850.00%20385.00%0706134752.41%741147350.31%499103248.35%16306291690100922631132
2Americans633000001717031200000811-33210000096360.5001726431049769520130408655659691495110611114428.57%18477.78%1706134752.41%741147350.31%499103248.35%16306291690100922631132
3Barracuda10000010211100000102110000000000021.0002130049769520174086556596912541711100.00%2150.00%0706134752.41%741147350.31%499103248.35%16306291690100922631132
4Bears4300010013103210001006602200000074370.875132235004976952091408655659697624226011545.45%11372.73%0706134752.41%741147350.31%499103248.35%16306291690100922631132
5Bruins11000000431110000004310000000000021.00046100049769520154086556596924106163133.33%30100.00%0706134752.41%741147350.31%499103248.35%16306291690100922631132
6Canucks2010100012-1100010001011010000002-220.50012301497695201240865565969157924600.00%20100.00%0706134752.41%741147350.31%499103248.35%16306291690100922631132
7Comets1010000003-31010000003-30000000000000.00000000497695201940865565969831115200.00%3233.33%0706134752.41%741147350.31%499103248.35%16306291690100922631132
8Condors1000000145-1000000000001000000145-110.50048120049769520204086556596920710304125.00%5180.00%0706134752.41%741147350.31%499103248.35%16306291690100922631132
9Crunch11000000312110000003120000000000021.0003690049769520214086556596922642011100.00%20100.00%0706134752.41%741147350.31%499103248.35%16306291690100922631132
10Eagles603012001224-1230200100311-830101100913-440.333122335004976952011540865565969141448310920630.00%19668.42%0706134752.41%741147350.31%499103248.35%16306291690100922631132
11Griffins4300000115692200000011292100000144070.875152540004976952091408655659697027319414750.00%8275.00%0706134752.41%741147350.31%499103248.35%16306291690100922631132
12Gulls11000000321000000000001100000032121.00036900497695201040865565969217916000%30100.00%0706134752.41%741147350.31%499103248.35%16306291690100922631132
13Heat62100210181803010011068-2320001001210280.66718274501497695208440865565969113225613511436.36%12558.33%0706134752.41%741147350.31%499103248.35%16306291690100922631132
14IceHogs10001000211100010002110000000000021.000246004976952094086556596961222100.00%10100.00%0706134752.41%741147350.31%499103248.35%16306291690100922631132
15Islanders413000001321-820200000611-521100000710-320.25013193200497695201114086556596918053757212325.00%15660.00%0706134752.41%741147350.31%499103248.35%16306291690100922631132
16Marlies4210001012102210000107432110000056-160.750121628004976952050408655659696629387111327.27%9366.67%1706134752.41%741147350.31%499103248.35%16306291690100922631132
17Monsters1010000036-3000000000001010000036-300.000358004976952025408655659692882610200.00%3166.67%0706134752.41%741147350.31%499103248.35%16306291690100922631132
18Moose62201001141313110100010823110000145-170.583142438004976952012340865565969110389912018316.67%18477.78%0706134752.41%741147350.31%499103248.35%16306291690100922631132
19Penguins6220101015150311000107703110100088080.667151934104976952013940865565969113336812519631.58%14471.43%1706134752.41%741147350.31%499103248.35%16306291690100922631132
20Phantoms40301000812-42020000047-32010100045-120.25081321104976952076408655659691172674657114.29%12283.33%1706134752.41%741147350.31%499103248.35%16306291690100922631132
21Reign4110200068-22110000026-42000200042260.75068140149769520594086556596952729689333.33%7271.43%0706134752.41%741147350.31%499103248.35%16306291690100922631132
22Roadrunners430000011064210000015322200000053270.87510152500497695206640865565969672146746466.67%8275.00%0706134752.41%741147350.31%499103248.35%16306291690100922631132
23Rocket2020000069-3000000000002020000069-300.0006101600497695204340865565969571931453266.67%8450.00%0706134752.41%741147350.31%499103248.35%16306291690100922631132
24Senators1000000112-1000000000001000000112-110.5001120049769520104086556596981217000%10100.00%0706134752.41%741147350.31%499103248.35%16306291690100922631132
25Silver Knights10001000211100010002110000000000021.00024600497695202640865565969177612100.00%30100.00%0706134752.41%741147350.31%499103248.35%16306291690100922631132
26Stars631011001616030101100813-53300000083590.750162743024976952011940865565969100396410012325.00%17476.47%0706134752.41%741147350.31%499103248.35%16306291690100922631132
27Thunderbirds50500000925-1630300000718-112020000027-500.0009142300497695201044086556596919979718515320.00%130100.00%0706134752.41%741147350.31%499103248.35%16306291690100922631132
28Wild1010000015-4000000000001010000015-400.00012300497695202140865565969399817100.00%4250.00%0706134752.41%741147350.31%499103248.35%16306291690100922631132
29Wolf Pack11000000321000000000001100000032121.0003580049769520124086556596929926194250.00%30100.00%0706134752.41%741147350.31%499103248.35%16306291690100922631132
30Wolves1010000026-41010000026-40000000000000.000246004976952020408655659692931212500.00%10100.00%1706134752.41%741147350.31%499103248.35%16306291690100922631132
Total923233010746234262-2846121805542115134-1946201505204119128-91050.57123437260646497695201755408655659691990630111116982297131.00%2456175.10%5706134752.41%741147350.31%499103248.35%16306291690100922631132
_Since Last GM Reset923233010746234262-2846121805542115134-1946201505204119128-91050.57123437260646497695201755408655659691990630111116982297131.00%2456175.10%5706134752.41%741147350.31%499103248.35%16306291690100922631132
_Vs Conference75282607734197213-163810160253299118-193718100520298953870.5801973085054549769520147540865565969165552894514061956332.31%2015075.12%4706134752.41%741147350.31%499103248.35%16306291690100922631132
_Vs Division221513046225775-181148024212540-1511115022013235-3501.1365787144204976952049340865565969580159314378621727.42%621870.97%3706134752.41%741147350.31%499103248.35%16306291690100922631132

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
92105OTL1234372606175519906301111169846
All Games
GPWLOTWOTL SOWSOLGFGA
92323310746234262
Home Games
GPWLOTWOTL SOWSOLGFGA
4612185542115134
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4620155204119128
Last 10 Games
WLOTWOTL SOWSOL
320203
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2297131.00%2456175.10%5
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
4086556596949769520
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
706134752.41%741147350.31%499103248.35%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
16306291690100922631132


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
15Eagles3Checkers2LXBoxScore
326Checkers4Stars3WBoxScore
441Stars6Checkers1LBoxScore
666Americans1Checkers5WBoxScore
782Checkers4Admirals2WBoxScore
890Checkers6Heat5WBoxScore
9107Thunderbirds8Checkers4LBoxScore
11126Checkers1Moose2LXXBoxScore
12137Penguins4Checkers2LBoxScore
13156Moose3Checkers5WBoxScore
15174Checkers1Penguins4LBoxScore
16188Admirals0Checkers8WBoxScore
17210Checkers3Moose1WBoxScore
18220Heat4Checkers2LBoxScore
19231Checkers3Roadrunners2WBoxScore
20251Thunderbirds3Checkers1LBoxScore
21261Checkers3Eagles2WXBoxScore
22279Islanders2Checkers1LBoxScore
23283Checkers5Americans1WBoxScore
25311Checkers1Wild5LBoxScore
26322Checkers2Reign1WXBoxScore
27333Wolves6Checkers2LBoxScore
28351Silver Knights1Checkers2WXBoxScore
30369Checkers4Condors5LXXBoxScore
31385Islanders9Checkers5LBoxScore
33404Heat2Checkers1LXBoxScore
34413Checkers4Penguins3WXBoxScore
35424Checkers2Marlies5LBoxScore
36445Checkers3Marlies1WBoxScore
37458Marlies2Checkers4WBoxScore
39474Penguins1Checkers2WXXBoxScore
40490Checkers3Monsters6LBoxScore
42502Checkers2Admirals1WBoxScore
43519Americans6Checkers1LBoxScore
44536Checkers3Penguins1WBoxScore
45548Moose3Checkers2LBoxScore
46566Stars4Checkers3LXBoxScore
47579Checkers2Stars0WBoxScore
48594Checkers0Moose2LBoxScore
49609Roadrunners1Checkers4WBoxScore
50628Moose2Checkers3WXBoxScore
51642Checkers2Americans4LBoxScore
52654Checkers3Phantoms2WXBoxScore
54669Comets3Checkers0LBoxScore
55689Checkers1Phantoms3LBoxScore
56701Stars3Checkers4WXBoxScore
58723Checkers2Reign1WXBoxScore
59736IceHogs1Checkers2WXBoxScore
60755Eagles2Checkers1LBoxScore
62773Checkers4Bears2WBoxScore
63783Checkers5Islanders4WBoxScore
64797Bruins3Checkers4WBoxScore
65812Checkers3Wolf Pack2WBoxScore
66828Reign6Checkers1LBoxScore
68847Checkers2Griffins1WBoxScore
69858Americans4Checkers2LBoxScore
70876Reign0Checkers1WBoxScore
72892Checkers4Eagles5LXBoxScore
73907Checkers2Islanders6LBoxScore
74919Phantoms4Checkers3LBoxScore
76936Checkers2Stars0WBoxScore
77950Barracuda1Checkers2WXXBoxScore
78971Marlies2Checkers3WXXBoxScore
80994Griffins1Checkers5WBoxScore
821018Checkers3Bears2WBoxScore
831029Eagles6Checkers0LBoxScore
841048Checkers3Rocket5LBoxScore
851061Crunch1Checkers3WBoxScore
861073Checkers3Gulls2WBoxScore
871091Canucks0Checkers1WXBoxScore
881105Checkers2Eagles6LBoxScore
891118Checkers4Admirals6LBoxScore
911134Heat2Checkers3WXXBoxScore
921154Thunderbirds7Checkers2LBoxScore
931166Checkers3Rocket4LBoxScore
951187Penguins2Checkers3WBoxScore
961199Checkers0Canucks2LBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
971217Griffins1Checkers6WBoxScore
981229Checkers1Thunderbirds4LBoxScore
1001248Roadrunners2Checkers1LXXBoxScore
1011268Checkers2Heat0WBoxScore
1021276Admirals2Checkers1LXBoxScore
1041299Checkers2Roadrunners1WBoxScore
1051304Checkers1Thunderbirds3LBoxScore
1061318Phantoms3Checkers1LBoxScore
1071336Checkers1Senators2LXXBoxScore
1081343Checkers2Americans1WBoxScore
1091351Admirals1Checkers0LXXBoxScore
1121379Bears2Checkers3WBoxScore
1141401Bears4Checkers3LXBoxScore
1151405Checkers2Griffins3LXXBoxScore
1161420Checkers4Heat5LXBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3515
Attendance66,83535,448
Attendance PCT72.65%77.06%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
0 2224 - 74.12% 92,994$4,277,710$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Salaries CapCoaches Salaries
3,723,698$ 3,083,682$ 3,023,882$ 1,000,000$0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
26,133$ 2,723,687$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 34,607$ 0$




Checkers Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Checkers Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Checkers Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Checkers Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Checkers Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA