Login

Marlies
GP: 45 | W: 19 | L: 22 | OTL: 4 | P: 42
GF: 125 | GA: 152 | PP%: 27.91% | PK%: 68.42%
GM : Phil VendorMolen | Morale : 42 | Team Overall : 59
Next Games #716 vs Moose
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Penguins
14-22-9, 37pts
5
FINAL
6 Marlies
19-22-4, 42pts
Team Stats
OTL1StreakL1
9-10-4Home Record13-8-2
5-12-5Home Record6-14-2
1-6-3Last 10 Games3-5-2
2.51Goals Per Game2.78
3.49Goals Against Per Game3.38
33.62%Power Play Percentage27.91%
66.67%Penalty Kill Percentage68.42%
Marlies
19-22-4, 42pts
3
FINAL
5 Rocket
33-8-6, 72pts
Team Stats
L1StreakW3
13-8-2Home Record15-4-4
6-14-2Home Record18-4-2
3-5-2Last 10 Games8-0-2
2.78Goals Per Game3.91
3.38Goals Against Per Game2.79
27.91%Power Play Percentage26.81%
68.42%Penalty Kill Percentage67.86%
Moose
14-25-6, 34pts
Day 57
Marlies
19-22-4, 42pts
Team Stats
L2StreakL1
8-12-4Home Record13-8-2
6-13-2Away Record6-14-2
4-4-2Last 10 Games3-5-2
2.56Goals Per Game2.78
3.40Goals Against Per Game2.78
30.36%Power Play Percentage27.91%
74.50%Penalty Kill Percentage68.42%
Marlies
19-22-4, 42pts
Day 58
Canucks
19-21-6, 44pts
Team Stats
L1StreakW4
13-8-2Home Record9-12-2
6-14-2Away Record10-9-4
3-5-2Last 10 Games8-2-0
2.78Goals Per Game2.26
3.38Goals Against Per Game2.26
27.91%Power Play Percentage25.47%
68.42%Penalty Kill Percentage72.64%
Senators
19-24-4, 42pts
Day 59
Marlies
19-22-4, 42pts
Team Stats
L3StreakL1
12-11-0Home Record13-8-2
7-13-4Away Record6-14-2
3-6-1Last 10 Games3-5-2
2.06Goals Per Game2.78
2.53Goals Against Per Game2.78
25.00%Power Play Percentage27.91%
80.46%Penalty Kill Percentage68.42%
Team Leaders
Goals
James Malatesta
26
Assists
James Malatesta
31
Points
James Malatesta
57
Travis BarronPlus/Minus
Travis Barron
4

Team Stats
Goals For
125
2.78 GFG
Shots For
844
18.76 Avg
Power Play Percentage
27.9%
36 GF
Offensive Zone Start
34.3%
Goals Against
152
3.38 GAA
Shots Against
1023
22.73 Avg
Penalty Kill Percentage
68.4%%
36 GA
Defensive Zone Start
36.9%
Team Info

General ManagerPhil VendorMolen
CoachBenoit Grouix
DivisionDivision 5
ConferenceConference 2
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance2,211
Season Tickets1,500


Roster Info

Pro Team31
Farm Team18
Contract Limit49 / 100
Prospects149


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Alex LaferriereX100.007956848266647867506267622557576757640232875,000$
2James Malatesta (R)X100.009997846766566970256774632546466980640213841,667$
3Elmer Soderblom (R)XX100.009493956194666858735457725546466337610232925,000$
4Olle LycksellX100.005940896560557468377060552548485960600252875,000$
5Jonathan GrudenX100.0092928864665275633751587625464662466002431,092,000$
6Scott ReedyX100.0083769964765555597447676664454563625902531,253,000$
7Ben King (R)XX99.007873906374656759745362635845456163590223790,000$
8Ivan Ivan (R)X100.0071639168646770597457586054464559755902231,955,000$
9Judd Caulfield (R)X100.008177896278646756505257645345455967590231750,000$
10Andre LeeXX100.007979806780616354694659635745456028580241864,515$
11Aidan McDonoughX100.008175966375626553504656635445455953570251750,000$
12Isaac RatcliffeX100.0082867464866671475041486446444455205502531,088,000$
13Mason Lohrei (R)X100.007143867876706765255651722549496165650242925,000$
14Declan ChisholmX100.0063418376707065782558527225484860486402531,180,000$
15Joel HanleyX100.0076748072696356632549487225646559506303321,000,000$
16Ryan JohnsonX100.005840917864637062255448662549495753610232925,000$
17Noel HoefenmayerX100.006970626570687258254855584746465365590262750,000$
18Philip KempX100.0076767562767684492541406138454551645902531,135,000$
Scratches
1Oliver WahlstromX100.0076449281795855713664586461636463526402411,177,000$
2Maxim Cajkovic (R)X100.007267886068515058505557615545455952560241750,000$
3Travis BarronX100.007275696275707552504753605045455642560263973,000$
4Ben McCartneyX100.006667646467606255505848584644445620550231880,643$
5Blade JenkinsX100.007872936472464554504558645544445920550243971,000$
6Mitchell HoelscherX100.007265896365565752655544604244445420540242750,000$
7Robert Mastrosimone (R)XX100.006459746059596152655347564544445320530231750,000$
8Santtu KinnunenX100.006760886560778450254342573945455358580252925,000$
9Dawson BarteauxX100.007365976866596151254444604345455447570251750,000$
10Cole KrygierX100.007573846073616546253739603745455053560241750,000$
TEAM AVERAGE99.96756885677162665845525463434747584959
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Jared Moe100.00594759816465576468663044446162610251750,000$
2Kevin Mandolese100.00504556855153515654523044445161540243942,000$
Scratches
1Keith Petruzzelli100.00454759834242495144463044444742500251802,110$
TEAM AVERAGE100.0051465883525352575555304444535555
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Benoit Grouix60477337564753CAN551750,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1James MalatestaMarlies (TOR)LW452631570156806961129467620.16%1889419.8781624341010002493034.21%762410101.2713637552
2Oliver WahlstromMarlies (TOR)RW39133043-16405163113357711.50%1786622.223161932890115752335.64%7211918000.9901000233
3Olle LycksellMarlies (TOR)RW45212142-181805265121266217.36%2496321.4153822841013454031.39%1371914010.8700000423
4Declan ChisholmMarlies (TOR)D4552934-232105810712036354.17%79121226.9554927129022595100%04236000.5600011202
5Ivan IvanMarlies (TOR)C4512132521154435103378811.65%549711.0600000000002051.87%214152001.0000100110
6Jonathan GrudenMarlies (TOR)LW4591423-155735697466203413.64%2287419.4433616831011751037.20%3791014100.5300043104
7Ben KingMarlies (TOR)C/RW45121022-142925415662274119.35%1077717.2700007000012159.72%721817010.5700212021
8Judd CaulfieldMarlies (TOR)RW45101222-104325654432112731.25%1175916.8783111390000082152.05%73313000.5814203410
9Ryan JohnsonMarlies (TOR)D4521618-108031544615214.35%2992720.610226820114770022.22%91815000.3900000100
10Noel HoefenmayerMarlies (TOR)D4551318-148630906447212210.64%51114425.4454912117000172010%11729000.3100312112
11Scott ReedyMarlies (TOR)C456915-63030545945112913.33%2286319.18033378000071045.49%233716000.3500213012
12Elmer SoderblomMarlies (TOR)C/LW3921214-1391535443314146.06%859915.370444250001381054.97%171912000.4700012030
13Philip KempMarlies (TOR)D4511213-19954559603117123.23%67104223.16156653000345000%0322000.2500315001
14Joel HanleyMarlies (TOR)D433912-817536292517612.00%2055112.83224755011059100%189000.4400010001
15Santtu KinnunenMarlies (TOR)D44279224101743126516.67%1073816.79134370000016000%0511000.2400002000
16Mason LohreiMarlies (TOR)D4635812203256369148.33%2395220.71101268101265100%0711000.1700000011
17Jacob MacDonaldMaple LeafsD30156-9801419131047.69%441413.820000600000000%046000.2900000000
18Alex LaferriereMarlies (TOR)RW31342004262516.67%05016.810110600000000%030001.5900000001
19Andre LeeMarlies (TOR)C/LW30123-11352921126108.33%130810.28000050000160047.37%3855000.1901001000
20Maxim CajkovicMarlies (TOR)RW412132209733366.67%02205.3800000000000140.00%512000.2700000011
21Travis BarronMarlies (TOR)LW262134003440250.00%0772.990000000005000%000100.7700000000
22Aidan McDonoughMarlies (TOR)LW45213-8203238174611.76%556612.58000014000010050.00%857000.1112000000
23Dawson BarteauxMarlies (TOR)D4402245522347200%660113.6600000000049000%0211000.0700100000
24Isaac RatcliffeMarlies (TOR)LW6000-100501000%0315.2200000000000050.00%20000000000000
25Cole KrygierMarlies (TOR)D43000200000000%0250.600000000001000%01000000000000
Team Total or Average974141258399-1337013259211039108437559313.01%4321596216.39426911118711713582781021741.40%2140245280320.50311201431212124
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Kevin MandoleseMarlies (TOR)145500.8743.47658003830218400001123000
2Jared MoeMarlies (TOR)113620.8523.346642037250135010.80010110000
3Joseph WollMaple Leafs41210.9101.772380177849000040100
4Keith PetruzzelliMarlies (TOR)31000.7507.144200520120000022000
Team Total or Average32101330.8663.251604218765038001102645100


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Country Rookie Weight Height No Trade Available For Trade Acquired By Last Trade Date Force Waivers Waiver Possible Contract Contract Signature Date Force UFA Emergency Recall Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Salary Cap Year 2Salary Cap Year 3Salary Cap Year 4Salary Cap Year 5Salary Cap Year 6Salary Cap Year 7Salary Cap Year 8Salary Cap Year 9Salary Cap Year 10No Trade Year 2No Trade Year 3No Trade Year 4No Trade Year 5No Trade Year 6No Trade Year 7No Trade Year 8No Trade Year 9No Trade Year 10Link
Aidan McDonoughMarlies (TOR)LW251999-11-06USANo201 Lbs6 ft2NoNoN/ANoNo1FalseFalsePro & Farm750,000$394,068$0$0$No---------------------------
Alex LaferriereMarlies (TOR)RW232001-10-28USANo172 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm875,000$459,746$0$0$No875,000$--------875,000$--------No--------
Andre LeeMarlies (TOR)C/LW242000-07-26SWENo205 Lbs6 ft5NoNoN/ANoNo1FalseFalsePro & Farm864,515$454,237$0$0$No---------------------------Link
Ben KingMarlies (TOR)C/RW222002-05-15BCYes198 Lbs6 ft2NoNoProspectNoNo32024-09-17FalseFalsePro & Farm790,000$415,085$0$0$No790,000$790,000$-------790,000$790,000$-------NoNo-------Link
Ben McCartneyMarlies (TOR)LW232001-07-13MANNo182 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm880,643$462,711$0$0$No---------------------------Link
Blade JenkinsMarlies (TOR)LW242000-08-11USANo195 Lbs6 ft1NoNoN/ANoNo3FalseFalsePro & Farm971,000$510,186$0$0$No971,000$971,000$-------971,000$971,000$-------NoNo-------Link
Cole KrygierMarlies (TOR)D242000-05-05USANo192 Lbs6 ft3NoNoN/ANoNo1FalseFalsePro & Farm750,000$394,068$0$0$No---------------------------
Dawson BarteauxMarlies (TOR)D252000-01-12MANNo170 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm750,000$394,068$0$0$No---------------------------Link
Declan ChisholmMarlies (TOR)D252000-01-12ONTNo185 Lbs6 ft1NoNoTrade2025-01-20NoNo3FalseFalsePro & Farm1,180,000$620,000$0$0$No1,180,000$1,180,000$-------1,180,000$1,180,000$-------NoNo-------Link
Elmer SoderblomMarlies (TOR)C/LW232001-05-07SWEYes246 Lbs6 ft8NoNoN/ANoNo2FalseFalsePro & Farm925,000$486,017$0$0$No925,000$--------925,000$--------No--------Link
Isaac RatcliffeMarlies (TOR)LW251999-02-15ONTNo225 Lbs6 ft6NoNoN/ANoNo3FalseFalsePro & Farm1,088,000$571,661$0$0$No1,088,000$1,088,000$-------1,088,000$1,088,000$-------NoNo-------Link
Ivan IvanMarlies (TOR)C222002-08-20CZEYes175 Lbs5 ft10NoNoTrade2025-01-16NoNo32024-09-18FalseFalsePro & Farm1,955,000$1,027,203$0$0$No1,955,000$1,955,000$-------1,955,000$1,955,000$-------NoNo-------Link
James MalatestaMarlies (TOR)LW212003-05-31QUEYes178 Lbs5 ft9NoNoN/ANoNo3FalseFalsePro & Farm841,667$442,232$0$0$No841,667$841,667$-------841,667$841,667$-------NoNo-------
Jared MoeMarlies (TOR)G251999-07-22USANo205 Lbs6 ft3NoNoN/ANoNo1FalseFalsePro & Farm750,000$394,068$0$0$No---------------------------
Joel HanleyMarlies (TOR)D331991-06-08ONTNo189 Lbs5 ft11NoNoFree AgentNoNo22024-10-16FalseFalsePro & Farm1,000,000$525,424$0$0$No1,000,000$--------1,000,000$--------No--------Link / NHL Link
Jonathan GrudenMarlies (TOR)LW242000-05-04USANo169 Lbs6 ft0NoNoN/ANoNo3FalseFalsePro & Farm1,092,000$573,763$0$0$No1,092,000$1,092,000$-------1,092,000$1,092,000$-------NoNo-------Link
Judd CaulfieldMarlies (TOR)RW232001-03-19USAYes207 Lbs6 ft3NoNoN/ANoNo1FalseFalsePro & Farm750,000$394,068$0$0$No---------------------------
Keith PetruzzelliMarlies (TOR)G251999-02-09USANo190 Lbs6 ft6NoNoN/ANoNo1FalseFalsePro & Farm802,110$421,448$0$0$No---------------------------Link
Kevin MandoleseMarlies (TOR)G242000-08-22QUENo200 Lbs6 ft5NoNoN/ANoNo3FalseFalsePro & Farm942,000$494,949$0$0$No942,000$942,000$-------942,000$942,000$-------NoNo-------Link
Mason LohreiMarlies (TOR)D242001-01-17USAYes194 Lbs6 ft4NoNoTrade2025-01-17NoNo2FalseFalsePro & Farm925,000$486,017$0$0$No925,000$--------925,000$--------No--------
Maxim CajkovicMarlies (TOR)RW242001-01-03SLOYes185 Lbs5 ft11NoNoN/ANoNo1FalseFalsePro & Farm750,000$394,068$0$0$No---------------------------Link
Mitchell HoelscherMarlies (TOR)C242000-01-27ONTNo176 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm750,000$394,068$0$0$No750,000$--------750,000$--------No--------Link
Noel HoefenmayerMarlies (TOR)D261999-01-06ONTNo192 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm750,000$394,068$0$0$No750,000$--------750,000$--------No--------Link
Oliver WahlstromMarlies (TOR)RW242000-06-13USANo211 Lbs6 ft2NoNoN/ANoNo1FalseFalsePro & Farm1,177,000$618,424$0$0$No---------------------------Link
Olle LycksellMarlies (TOR)RW251999-08-24SWENo165 Lbs5 ft10NoNoN/ANoNo2FalseFalsePro & Farm875,000$459,746$0$0$No875,000$--------875,000$--------No--------Link
Philip KempMarlies (TOR)D251999-02-12USANo200 Lbs6 ft3NoNoN/ANoNo3FalseFalsePro & Farm1,135,000$596,356$0$0$No1,135,000$1,135,000$-------1,135,000$1,135,000$-------NoNo-------Link
Robert MastrosimoneMarlies (TOR)C/LW232001-01-24USAYes163 Lbs5 ft10NoNoN/ANoNo1FalseFalsePro & Farm750,000$394,068$0$0$No---------------------------
Ryan JohnsonMarlies (TOR)D232001-07-24USANo169 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm925,000$486,017$0$0$No925,000$--------925,000$--------No--------
Santtu KinnunenMarlies (TOR)D251999-03-25FINNo154 Lbs6 ft2NoNoN/ANoNo2FalseFalsePro & Farm925,000$486,017$0$0$No925,000$--------925,000$--------No--------Link
Scott ReedyMarlies (TOR)C251999-04-04USANo205 Lbs6 ft2NoNoN/ANoNo3FalseFalsePro & Farm1,253,000$658,356$0$0$No1,253,000$1,253,000$-------1,253,000$1,253,000$-------NoNo-------Link
Travis BarronMarlies (TOR)LW261998-08-17ONTNo205 Lbs6 ft1NoNoN/ANoNo3FalseFalsePro & Farm973,000$511,237$0$0$No973,000$973,000$-------973,000$973,000$-------NoNo-------Link / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3124.32190 Lbs6 ft22.00940,159$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1James MalatestaElmer SoderblomAlex Laferriere30122
2Jonathan GrudenBen KingOlle Lycksell30122
3Aidan McDonoughScott ReedyBen King20122
4Isaac RatcliffeIvan IvanJudd Caulfield20122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Mason LohreiDeclan Chisholm35122
2Joel HanleyRyan Johnson35122
3Noel HoefenmayerPhilip Kemp30122
4Mason LohreiDeclan Chisholm0122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1James MalatestaElmer SoderblomAlex Laferriere60122
2Jonathan GrudenBen KingOlle Lycksell40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Mason LohreiDeclan Chisholm60122
2Joel HanleyRyan Johnson40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Elmer SoderblomJames Malatesta60122
2Ben KingJonathan Gruden40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Mason LohreiDeclan Chisholm60122
2Joel HanleyRyan Johnson40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Elmer Soderblom60122Mason LohreiDeclan Chisholm60122
2Ben King40122Joel HanleyRyan Johnson40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Elmer SoderblomJames Malatesta60122
2Ben KingJonathan Gruden40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Mason LohreiDeclan Chisholm60122
2Joel HanleyRyan Johnson40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
James MalatestaElmer SoderblomAlex LaferriereMason LohreiDeclan Chisholm
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
James MalatestaElmer SoderblomAlex LaferriereMason LohreiDeclan Chisholm
Extra Forwards
Normal PowerPlayPenalty Kill
Jonathan Gruden, Ben King, Judd CaulfieldJonathan Gruden, Ben KingJonathan Gruden
Extra Defensemen
Normal PowerPlayPenalty Kill
Ryan Johnson, Noel Hoefenmayer, Philip KempRyan JohnsonRyan Johnson, Noel Hoefenmayer
Penalty Shots
Alex Laferriere, James Malatesta, Elmer Soderblom, Olle Lycksell, Jonathan Gruden
Goalie
#1 : Jared Moe, #2 : Kevin Mandolese


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals211000004401010000012-11100000032120.5004610003234564332172653581530523368337.50%4175.00%025765639.18%30070642.49%22455040.73%7852928204921117564
2Bears3300000012663300000012660000000000061.00012243600323456456217265358156115294211654.55%12466.67%025765639.18%30070642.49%22455040.73%7852928204921117564
3Checkers3120000089-1211000006511010000024-220.333813211032345645321726535815331044569333.33%7271.43%025765639.18%30070642.49%22455040.73%7852928204921117564
4Comets11000000312110000003120000000000021.00035800323456420217265358151440193266.67%000%025765639.18%30070642.49%22455040.73%7852928204921117564
5Condors1010000018-7000000000001010000018-700.000112003234564252172653581542173212400.00%6266.67%025765639.18%30070642.49%22455040.73%7852928204921117564
6Crunch10000010431100000104310000000000021.0004590032345641821726535815156421300.00%2150.00%025765639.18%30070642.49%22455040.73%7852928204921117564
7Griffins514000001018-831200000712-52020000036-320.2001018280032345641092172653581513338619717317.65%8187.50%025765639.18%30070642.49%22455040.73%7852928204921117564
8Heat2000010146-21000010034-11000000112-120.50046100032345642221726535815551514385120.00%20100.00%025765639.18%30070642.49%22455040.73%7852928204921117564
9Islanders20200000812-41010000035-21010000057-200.000813210032345645621726535815822529296233.33%7185.71%025765639.18%30070642.49%22455040.73%7852928204921117564
10Moose311010001091110000004132010100068-240.66710152500323456454217265358154511576110330.00%6350.00%025765639.18%30070642.49%22455040.73%7852928204921117564
11Penguins330000001798220000009631100000083561.0001730470032345646521726535815481195479333.33%10550.00%125765639.18%30070642.49%22455040.73%7852928204921117564
12Phantoms612001111216-430100011710-33110010056-160.5001219311032345648721726535815117467510810330.00%15380.00%025765639.18%30070642.49%22455040.73%7852928204921117564
13Reign21100000910-1110000008441010000016-520.5009152400323456441217265358154920473211100.00%6350.00%125765639.18%30070642.49%22455040.73%7852928204921117564
14Roadrunners422000009812110000034-12110000064240.5009162520323456461217265358157321546312216.67%7271.43%025765639.18%30070642.49%22455040.73%7852928204921117564
15Rocket1010000035-2000000000001010000035-200.00036910323456444217265358152714426100.00%220.00%025765639.18%30070642.49%22455040.73%7852928204921117564
16Stars21100000440000000000002110000044020.50048120032345642621726535815421513255240.00%4175.00%025765639.18%30070642.49%22455040.73%7852928204921117564
17Thunderbirds40400000724-171010000038-530300000416-1200.00071219003234564742172653581515757578015213.33%16568.75%025765639.18%30070642.49%22455040.73%7852928204921117564
Total45162201222125152-2723118001217371222514011015281-29420.4671252123375032345648442172653581510233306387921293627.91%1143668.42%225765639.18%30070642.49%22455040.73%7852928204921117564
_Since Last GM Reset45162201222125152-2723118001217371222514011015281-29420.4671252123375032345648442172653581510233306387921293627.91%1143668.42%225765639.18%30070642.49%22455040.73%7852928204921117564
_Vs Conference41152001212114135-2121108001116667-120512011014868-20380.463114195309403234564737217265358159252895987141183428.81%1043170.19%225765639.18%30070642.49%22455040.73%7852928204921117564
_Vs Division10815001112535-10666000111720-342900100815-7201.000254267203234564224217265358152086811320030620.00%19668.42%025765639.18%30070642.49%22455040.73%7852928204921117564

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4542L1125212337844102333063879250
All Games
GPWLOTWOTL SOWSOLGFGA
4516221222125152
Home Games
GPWLOTWOTL SOWSOLGFGA
2311801217371
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2251411015281
Last 10 Games
WLOTWOTL SOWSOL
350101
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1293627.91%1143668.42%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
217265358153234564
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
25765639.18%30070642.49%22455040.73%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
7852928204921117564


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
216Griffins8Marlies3LBoxScore
334Phantoms3Marlies4WXXBoxScore
446Marlies5Islanders7LBoxScore
667Reign4Marlies8WBoxScore
777Marlies3Phantoms1WBoxScore
889Marlies1Griffins2LBoxScore
9106Marlies5Roadrunners1WBoxScore
10117Islanders5Marlies3LBoxScore
12136Bears2Marlies4WBoxScore
13155Bears3Marlies5WBoxScore
14170Marlies1Reign6LBoxScore
15183Marlies0Thunderbirds6LBoxScore
17198Thunderbirds8Marlies3LBoxScore
18219Roadrunners2Marlies3WBoxScore
19236Marlies1Thunderbirds4LBoxScore
20244Marlies0Phantoms1LXBoxScore
21259Marlies3Moose2WXBoxScore
22272Admirals2Marlies1LBoxScore
24292Phantoms4Marlies3LXXBoxScore
25310Marlies1Stars3LBoxScore
26321Crunch3Marlies4WXXBoxScore
27336Marlies2Phantoms4LBoxScore
28353Phantoms3Marlies0LBoxScore
30365Marlies3Thunderbirds6LBoxScore
31382Bears1Marlies3WBoxScore
33400Marlies1Condors8LBoxScore
34408Marlies1Roadrunners3LBoxScore
35424Checkers2Marlies5WBoxScore
36445Checkers3Marlies1LBoxScore
37458Marlies2Checkers4LBoxScore
39476Moose1Marlies4WBoxScore
40488Marlies3Stars1WBoxScore
42506Griffins1Marlies2WBoxScore
44528Comets1Marlies3WBoxScore
45542Marlies3Admirals2WBoxScore
46555Marlies1Heat2LXXBoxScore
47573Heat4Marlies3LXBoxScore
48584Marlies2Griffins4LBoxScore
49600Griffins3Marlies2LBoxScore
50615Marlies8Penguins3WBoxScore
51631Penguins1Marlies3WBoxScore
53655Marlies3Moose6LBoxScore
54665Roadrunners2Marlies0LBoxScore
55686Penguins5Marlies6WBoxScore
56704Marlies3Rocket5LBoxScore
57716Moose-Marlies-
58733Marlies-Canucks-
59745Senators-Marlies-
61764Marlies-Barracuda-
63778Stars-Marlies-
64789Marlies-Penguins-
65807Marlies-IceHogs-
66818Heat-Marlies-
67838Marlies-IceHogs-
68849Senators-Marlies-
70871Admirals-Marlies-
71882Marlies-Americans-
72900Stars-Marlies-
74913Marlies-Admirals-
75932Wolves-Marlies-
76946Marlies-Heat-
77955Marlies-Bears-
78971Marlies-Checkers-
80983Canucks-Marlies-
811002Marlies-Roadrunners-
821013Silver Knights-Marlies-
831034Islanders-Marlies-
841040Marlies-Monsters-
851064Marlies-Bruins-
861074Wolf Pack-Marlies-
871092Marlies-Griffins-
881104Americans-Marlies-
901124Marlies-Americans-
911136Reign-Marlies-
921157Americans-Marlies-
931167Marlies-Gulls-
951191Roadrunners-Marlies-
961196Marlies-Eagles-
Trade Deadline --- Trades can’t be done after this day is simulated!
971216Marlies-Islanders-
981230Wild-Marlies-
991241Marlies-Islanders-
1001258Thunderbirds-Marlies-
1011265Marlies-Bears-
1031281Marlies-Eagles-
1041297Reign-Marlies-
1051314Marlies-Reign-
1071330Islanders-Marlies-
1081345Marlies-Reign-
1091353Marlies-Bears-
1101363Thunderbirds-Marlies-
1141395Eagles-Marlies-
1171423Eagles-Marlies-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3515
Attendance33,09217,756
Attendance PCT71.94%77.20%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
23 2211 - 73.69% 92,287$2,122,594$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Salaries CapCoaches Salaries
1,542,386$ 2,914,493$ 2,871,793$ 750,000$0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
24,699$ 1,175,471$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
2,122,594$ 62 31,055$ 1,925,410$




Marlies Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Marlies Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Marlies Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Marlies Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Marlies Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA