Login

Blues
GP: 52 | W: 30 | L: 13 | OTL: 9 | P: 69
GF: 202 | GA: 161 | PP%: 22.28% | PK%: 75.22%
GM : Jesse OReilly | Morale : 59 | Team Overall : 74
Next Games #803 vs Islanders
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Blues
30-13-9, 69pts
3
FINAL
2 Kings
30-17-4, 64pts
Team Stats
W4StreakOTL1
16-6-3Home Record18-6-2
14-7-6Away Record12-11-2
7-2-1Last 10 Games5-3-2
3.88Goals Per Game3.80
3.10Goals Against Per Game3.10
22.28%Power Play Percentage14.36%
75.22%Penalty Kill Percentage81.15%
Blues
30-13-9, 69pts
3
FINAL
2 Islanders
32-13-6, 70pts
Team Stats
W4StreakOTL1
16-6-3Home Record12-9-5
14-7-6Away Record20-4-1
7-2-1Last 10 Games5-2-3
3.88Goals Per Game3.57
3.10Goals Against Per Game2.76
22.28%Power Play Percentage17.42%
75.22%Penalty Kill Percentage83.77%
Islanders
32-13-6, 70pts
2022-12-18
Blues
30-13-9, 69pts
Team Stats
OTL1StreakW4
12-9-5Home Record16-6-3
20-4-1Away Record14-7-6
5-2-3Last 10 Games7-2-1
3.57Goals Per Game3.88
2.76Goals Against Per Game3.10
17.42%Power Play Percentage22.28%
83.77%Penalty Kill Percentage75.22%
Blues
30-13-9, 69pts
2022-12-19
Avalanche
27-21-4, 58pts
Team Stats
W4StreakL1
16-6-3Home Record13-11-1
14-7-6Away Record14-10-3
7-2-1Last 10 Games6-4-0
3.88Goals Per Game3.63
3.10Goals Against Per Game3.25
22.28%Power Play Percentage19.47%
75.22%Penalty Kill Percentage77.44%
Kings
30-17-4, 64pts
2022-12-21
Blues
30-13-9, 69pts
Team Stats
OTL1StreakW4
18-6-2Home Record16-6-3
12-11-2Away Record14-7-6
5-3-2Last 10 Games7-2-1
3.80Goals Per Game3.88
3.10Goals Against Per Game3.10
14.36%Power Play Percentage22.28%
81.15%Penalty Kill Percentage75.22%
Team Leaders
Brayden PointGoals
Brayden Point
33
Brayden PointAssists
Brayden Point
52
Brayden PointPoints
Brayden Point
85
Shayne GostisbeherePlus/Minus
Shayne Gostisbehere
24
Vitek VanecekWins
Vitek Vanecek
22
Scott WedgewoodSave Percentage
Scott Wedgewood
0.927

Team Stats
Goals For
202
3.88 GFG
Shots For
1864
35.85 Avg
Power Play Percentage
22.3%
41 GF
Offensive Zone Start
39.3%
Goals Against
161
3.10 GAA
Shots Against
1758
33.81 Avg
Penalty Kill Percentage
75.2%
28 GA
Defensive Zone Start
35.5%
Team Info

General ManagerJesse OReilly
CoachBill Peters
DivisionCentral
ConferenceWestern Conference
CaptainBoone Jenner
Assistant #1Alex Killorn
Assistant #2Brock Nelson


Arena Info

NameScottrade Center
Capacity18,000
Attendance17,015
Season Tickets10,800


Roster Info

Pro Team20
Farm Team28
Contract Limit48 / 100
Prospects65


Salary Cap

Estimated Season Salary Cap66,430,696$
Available Salary Cap4,069,304$
Special Salary Cap Value-3,471,000$
Players In Salary Cap20


Finance

Year to Date Revenue41,102,534$
Year To Date Expenses38,194,878$
Estimated Season Revenue34,526,129$
Estimated Season Expenses33,206,824$
Current Bank Account225,677,897$
Projected Bank Account226,823,799$


Team History

This Season30-13-9 (69PTS)
History140-67-21 (0.614%)
Playoff Appearances2
Playoff Record (W-L)10-14
Stanley Cup0


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Brayden PointX100.0076738596668387928686926366717581867902646,209,000$
2Evander KaneXX100.0097476285788178814082946638828283827703125,353,999$
3Alex Killorn (A)X100.00774477847279958630818279378086798377X03324,482,000$
4Boone Jenner (C)XX100.0079448982768576829578888179767682817702946,089,000$
5Vladimir TarasenkoX100.0076448890807575803589926161747880847603123,690,000$
6Brock Nelson (A)X100.0062528782807690768675937053788281807503134,368,000$
7Cam AtkinsonX100.0060409684617890803378837469808078797403332,890,000$
8Max PaciorettyX100.00715877828076697931809159538286798074X03412,996,500$
9Travis KonecnyXX100.0075537386647690823881736338696973797202533,376,000$
10Pavel ZachaXX100.0076449182797586776974716663686872747102523,942,000$
11Austin WatsonXX100.009799637878627659355866795371716880670313963,000$
12Nico SturmXX100.0077449481776288608461627725616267816702741,097,000$
13Kris LetangX100.0088558388739592882580578361849272818003525,829,000$
14Jakob ChychrunX100.0076567286808777782565598575696969797502433,638,000$
15Adam LarssonX100.00885681797886945925555089257879657475X03013,482,000$
16Shayne GostisbehereX100.0068429086668587852572628353707071837502912,484,000$
17Jonas BrodinX100.00664292837189897225654987257780667474X02923,342,000$
18Jani HakanpaaX100.00955885768370945825484789256162637472X0301750,000$
Scratches
Farm Team
1Oskar LindblomX99.0076449177716790673668737225666669906802621,239,000$
2Christian FischerXX100.0082459278786578715365637625686865886802521,659,000$
3Antoine RousselX100.007955717871627062406059797577776382660331846,000$
4Justin DanforthXX99.008444937364635668716375702550496990650291750,000$
5Joseph BlandisiXX100.006867707967585766806166656060606287630281791,000$
6John LeonardXX100.007343997468597864445860642552526187610242925,000$
7Beck MalenstynXX100.009396796979536460314960742547476184600243769,000$
8Ryan MacInnisXX100.007877826477616261755859665548486084600263911,000$
9Jimmy HuntingtonX100.007673846774626361766058645546466084600242750,000$
10Trey Fix-WolanskyX100.006663707065616163505965586046466090590234750,000$
11D.J. Busdeker (R)X100.006965786066606253505746584546465383550232750,000$
12Dino Kambeitz (R)XX100.0080788465795151516447516348454455235502331,008,000$
13Greg PaterynX99.00844571717865626825545180256767618568X0322750,000$
14Philippe MyersX100.0084468680816669622552517625616159816802621,557,000$
15Jarred TinordiX100.008191536891565947253640673858595086610301750,000$
16Lucas CarlssonX100.0075439271706065582552496525525257866102521,368,000$
17Dylan McIlrathX100.008187636387646947253540663957575086600301892,000$
18Cavan FitzgeraldX100.0076719265715861482537416439565651805802621,033,000$
19Andrew AgozzinoXX84.776866746766737665806163655861616279630322754,000$
20Jordy BelleriveX100.006669586369656854685648584645455419550234947,100$
21Tanner KaspickX100.007575756575545550634451614844445519540243750,000$
22Alex-Olivier VoyerX100.007472796772525449504646604444445320530232750,000$
23Maxim Golod (R)X100.006961896861454449504746584444445220520222832,000$
24Andreas BorgmanX100.007573806773454454253753655055555720570272946,000$
25Matthew HellicksonX100.007067766767434347253940583844445020530243869,556$
TEAM AVERAGE99.58776081757467726646616270456263657266
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Vitek Vanecek98.007378747474779281857395565774947502732,337,000$
2Scott Wedgewood100.007360607973738575837373606072897203011,153,000$
Scratches
Farm Team
1Alex Nedeljkovic100.006976737068717072696975565768806802741,653,000$
2Kaden Fulcher (R)100.00444253804544454945454544444537490242843,165$
3Garrett Metcalf (R)100.00444050734544454945454544444520480263856,666$
TEAM AVERAGE99.6061596275616267656561675252616462
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Bill Peters55879773765774CAN5721,500,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Brayden PointBluesC5233528516362052882497116113.25%20107920.759172637165000026353.98%16107315001.5805310562
2Vladimir TarasenkoBluesRW5230265614405044156538419.23%27109521.07891723179000004039.76%834017001.0214000605
3Evander KaneBluesLW/RW4714375163001134117648887.95%1283717.824101423139000003037.10%623213001.2200000351
4Alex KillornBluesLW52192039163158453163438811.66%35107020.59336141300002292042.67%753718010.7300001222
5Travis KonecnyBluesLW/RW521819371138106437130455913.85%971213.7035812133000050042.86%21297001.0400011171
6Cam AtkinsonBluesRW52142135-4001745128426110.94%865112.52491320167000001236.67%30309001.0805000102
7Brock NelsonBluesC521519345002459120265212.50%1888617.06257101280002421053.32%5722111000.7700000124
8Boone JennerBluesC/LW521912314405377129439314.73%1985416.440001161013975060.19%2112617000.7311000202
9Shayne GostisbehereBluesD5262329242027617133348.45%57108220.82651120186000064010.00%01632000.5400000013
10Kris LetangBluesD5242327-5175927610732523.74%62121523.37022511200002100.00%03230000.4400100012
11Max PaciorettyBluesLW5212112361605031106375311.32%1774814.402135118000003135.71%14169000.6112000112
12Jakob ChychrunBluesD52116171139562675429161.85%49103019.8200002000146000.00%0944000.3300001000
13Nico SturmBluesC/LW529716675364761143014.75%175189.97011020114822256.04%2731110000.6200100011
14Pavel ZachaBluesC/LW52481246052506122476.56%1759011.350000130000200047.62%2521310000.4100000000
15Austin WatsonBluesLW/RW5228104441080264521364.44%155079.75000040112570028.57%1495000.3900200001
16Adam LarssonBluesD520101048058493315210.00%5480515.4900000000180000.00%0424000.2500000000
17Jonas BrodinBluesD5207752027794823240.00%70108820.9300001000045000.00%0630000.1300000001
18Jani HakanpaaBluesD520552295566018970.00%4372814.02000000000104000.00%0135000.1401010000
19Christian FischerThunderbirds (STL)LW/RW1011100011100.00%188.10000000000000100.00%102002.4700000000
20Oskar LindblomThunderbirds (STL)LW3000100517120.00%33110.37000000000200100.00%140000.0000000000
21Antoine RousselThunderbirds (STL)LW1000000011010.00%01212.05000000000200100.00%100000.0000000000
Team Total or Average9362003255251512936510029931864608100910.73%5531555516.62416710817015041231568628952.61%3220409338010.68318733222629
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Vitek VanecekBlues3422750.9182.80203800951160602700.78614347443
2Scott WedgewoodBlues64010.9272.17332011216579000.0000517200
Team Total or Average4026760.9192.712370011071325681700.786143924643


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Adam LarssonBluesD3011/11/1992No208 Lbs6 ft3NoYesNo1Pro & Farm3,482,000$1,652,475$3,482,000$1,652,475$NoLink / NHL Link
Alex KillornBluesLW339/13/1989No199 Lbs6 ft1NoYesNo2Pro & Farm4,482,000$2,127,051$4,482,000$2,127,051$No4,034,000$Link / NHL Link
Austin WatsonBluesLW/RW311/12/1992No198 Lbs6 ft4NoNoNo3Pro & Farm963,000$457,017$963,000$457,017$No963,000$963,000$Link / NHL Link
Boone JennerBluesC/LW296/14/1993No207 Lbs6 ft2NoNoNo4Pro & Farm6,089,000$2,889,695$6,089,000$2,889,695$No2,728,000$2,728,000$2,728,000$Link / NHL Link
Brayden PointBluesC263/13/1996No183 Lbs5 ft10NoNoNo4Pro & Farm6,209,000$2,946,644$6,209,000$2,946,644$No3,271,000$2,974,000$2,677,000$Link / NHL Link
Brock NelsonBluesC3110/14/1991No212 Lbs6 ft4NoNoNo3Pro & Farm4,368,000$2,072,949$4,368,000$2,072,949$No4,368,000$4,368,000$Link / NHL Link
Cam AtkinsonBluesRW336/4/1989No176 Lbs5 ft8NoNoNo3Pro & Farm2,890,000$1,371,525$2,890,000$1,371,525$No2,890,000$2,890,000$Link / NHL Link
Evander KaneBluesLW/RW318/2/1991No210 Lbs6 ft2NoNoNo2Pro & Farm5,353,999$2,540,881$5,353,999$2,540,881$No5,353,999$Link / NHL Link
Jakob ChychrunBluesD243/31/1998No210 Lbs6 ft2NoNoNo3Pro & Farm3,638,000$1,726,508$3,638,000$1,726,508$No3,307,000$2,976,000$Link / NHL Link
Jani HakanpaaBluesD303/31/1992No218 Lbs6 ft5NoYesNo1Pro & Farm750,000$355,932$750,000$355,932$NoLink
Jonas BrodinBluesD297/12/1993No194 Lbs6 ft1NoYesNo2Pro & Farm3,342,000$1,586,034$3,342,000$1,586,034$No3,342,000$Link / NHL Link
Kris LetangBluesD354/24/1987No201 Lbs6 ft0NoNoNo2Pro & Farm5,829,000$2,766,305$5,829,000$2,766,305$No5,829,000$Link / NHL Link
Max PaciorettyBluesLW3411/20/1988No215 Lbs6 ft2NoYesNo1Pro & Farm2,996,500$1,422,068$2,996,500$1,422,068$NoLink / NHL Link
Nico SturmBluesC/LW275/2/1995No207 Lbs6 ft3NoNoNo4Pro & Farm1,097,000$520,610$1,097,000$520,610$No1,252,000$1,252,000$1,252,000$Link
Pavel ZachaBluesC/LW254/6/1997No210 Lbs6 ft3NoNoNo2Pro & Farm3,942,000$1,870,780$3,942,000$1,870,780$No3,942,000$Link / NHL Link
Scott WedgewoodBluesG308/13/1992No207 Lbs6 ft2NoNoNo1Pro & Farm1,153,000$547,186$1,153,000$547,186$NoLink / NHL Link
Shayne GostisbehereBluesD294/20/1993No180 Lbs5 ft11NoNoNo1Pro & Farm2,484,000$1,178,847$2,484,000$1,178,847$NoLink / NHL Link
Travis KonecnyBluesLW/RW253/11/1997No175 Lbs5 ft10NoNoNo3Pro & Farm3,376,000$1,602,169$3,376,000$1,602,169$No3,376,000$3,376,000$Link / NHL Link
Vitek VanecekBluesG271/8/1996No187 Lbs6 ft2NoNoNo3Pro & Farm2,337,000$1,109,085$2,337,000$1,109,085$No2,337,000$2,337,000$Link / NHL Link
Vladimir TarasenkoBluesRW3112/13/1991No225 Lbs6 ft0NoNoNo2Pro & Farm3,690,000$1,751,186$3,690,000$1,751,186$No3,690,000$Link / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2029.50201 Lbs6 ft12.353,423,575$

Sum Year 1 Salary Sum Year 2 Salary Sum Year 3 Salary Sum Year 4 Salary Sum Year 5 Salary
68,471,499$50,682,999$23,864,000$6,657,000$0$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Alex KillornBrayden PointVladimir Tarasenko40014
2Boone JennerBrock NelsonEvander Kane30014
3Max PaciorettyPavel ZachaTravis Konecny20014
4Austin WatsonNico SturmCam Atkinson10032
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Jonas BrodinKris Letang40041
2Jakob ChychrunShayne Gostisbehere30041
3Adam LarssonJani Hakanpaa20041
4Jonas BrodinJakob Chychrun10041
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Evander KaneBrayden PointCam Atkinson60005
2Alex KillornBrock NelsonTravis Konecny40005
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Shayne GostisbehereVladimir Tarasenko60014
2Max PaciorettyKris Letang40014
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Nico SturmBoone Jenner60041
2Brock NelsonAustin Watson40041
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Adam LarssonJani Hakanpaa60050
2Jakob ChychrunShayne Gostisbehere40050
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Nico Sturm60050Adam LarssonJani Hakanpaa60050
2Pavel Zacha40050Jonas BrodinKris Letang40050
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Brayden PointEvander Kane60014
2Brock NelsonVladimir Tarasenko40014
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Jonas BrodinKris Letang60041
2Adam LarssonShayne Gostisbehere40041
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Evander KaneBrayden PointVladimir TarasenkoShayne GostisbehereKris Letang
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Alex KillornBoone JennerCam AtkinsonJakob ChychrunAdam Larsson
Extra Forwards
Normal PowerPlayPenalty Kill
Brayden Point, Vladimir Tarasenko, Evander KaneBoone Jenner, Pavel ZachaAlex Killorn
Extra Defensemen
Normal PowerPlayPenalty Kill
Kris Letang, Jakob Chychrun, Shayne GostisbehereJonas BrodinJani Hakanpaa, Adam Larsson
Penalty Shots
Cam Atkinson, Brayden Point, Vladimir Tarasenko, Max Pacioretty, Boone Jenner
Goalie
#1 : Vitek Vanecek, #2 : Scott Wedgewood
Custom OT Lines Forwards
Evander Kane, Brayden Point, Alex Killorn, Brock Nelson, Boone Jenner, Vladimir Tarasenko, Vladimir Tarasenko, Max Pacioretty, Cam Atkinson, Travis Konecny, Pavel Zacha
Custom OT Lines Defensemen
Kris Letang, Shayne Gostisbehere, Jonas Brodin, Jakob Chychrun, Adam Larsson


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Avalanche211000008711010000024-21100000063320.5008122000224070182725080328347342.86%40100.00%0681125454.31%584113251.59%42980153.56%412446153216
2Blackhawks310001101512300000000000310001101512350.83315233800635211146333161033786114535.71%4250.00%0681125454.31%584113251.59%42980153.56%734257265731
3Blue Jackets11000000936000000000001100000093621.00091726002250441182502092185120.00%10100.00%0681125454.31%584113251.59%42980153.56%22131791910
4Canadiens11000000615000000000001100000061521.0006915004110351581202897178225.00%10100.00%0681125454.31%584113251.59%42980153.56%2112208179
5Canucks32100000171342200000014861010000035-240.667172744007550114373146010240255910330.00%11463.64%0681125454.31%584113251.59%42980153.56%694054275529
6Coyotes4310000012111330000008441010000047-360.750121931004530154556039010944248716318.75%12650.00%0681125454.31%584113251.59%42980153.56%1026467347037
7Devils11000000321000000000001100000032121.000369001020358151202982163133.33%10100.00%0681125454.31%584113251.59%42980153.56%2113218168
8Ducks20200000711-420200000711-40000000000000.00071118001240732423260763212335120.00%60100.00%0681125454.31%584113251.59%42980153.56%422645163215
9Flames411002001012-2211000004402000020068-240.50010142400424013154383901424420749222.22%10280.00%0681125454.31%584113251.59%42980153.56%834889356934
10Flyers220000001147110000007251100000042241.000111829004250693017220572241357342.86%3166.67%0681125454.31%584113251.59%42980153.56%523231153620
11Golden Knights3100010178-1210001004401000000134-140.6677101700232010332224748725165617211.76%8275.00%0681125454.31%584113251.59%42980153.56%734254285830
12Islanders10001000321000000000001000100032121.000369000111391210125387218300.00%110.00%0681125454.31%584113251.59%42980153.56%2314228179
13Jets320001001510511000000202210001001310350.833152641015550103393826010036197512216.67%20100.00%0681125454.31%584113251.59%42980153.56%734453255429
14Kings21000100660000000000002100010066030.7506915002130742426222812424012216.67%10100.00%0681125454.31%584113251.59%42980153.56%422345173518
15Maple Leafs211000001091110000005321010000056-120.500101626003430772919290682310476233.33%5260.00%1681125454.31%584113251.59%42980153.56%472838153317
16Panthers2020000047-31010000023-11010000024-200.0004711002020681922270831114365120.00%7185.71%0681125454.31%584113251.59%42980153.56%472940153217
17Penguins11000000422110000004220000000000021.0004610000220307158039714174125.00%20100.00%0681125454.31%584113251.59%42980153.56%21121891910
18Predators321000001174220000009451010000023-140.6671119300043401014230290812914509111.11%7271.43%0681125454.31%584113251.59%42980153.56%643863295225
19Red Wings10000010541000000000001000001054121.0005611000221341110133466816000.00%5180.00%0681125454.31%584113251.59%42980153.56%2212239189
20Senators2010000148-41000000134-11010000014-310.25048120011207020272245813940500.00%2150.00%0681125454.31%584113251.59%42980153.56%482940173519
21Sharks4110100113130210000018622010100057-250.62513213400561114457533251594916839222.22%8275.00%0681125454.31%584113251.59%42980153.56%895589356935
22Stars2200000010280000000000022000000102841.000101626002170641721260682210296233.33%50100.00%0681125454.31%584113251.59%42980153.56%392345183517
23Whalers11000000413110000004130000000000021.00046100012103512111203811224300.00%10100.00%0681125454.31%584113251.59%42980153.56%2314198169
24Wild21100000862211000008620000000000020.50081321002240862129360661312379222.22%6183.33%0681125454.31%584113251.59%42980153.56%462840173317
Total5226130262320216141251660010291662527107025211119516690.663202325527016457775186464059361829175855329710021844122.28%1132875.22%1681125454.31%584113251.59%42980153.56%11947161046455922479
_Since Last GM Reset5226130262320216141251660010291662527107025211119516690.663202325527016457775186464059361829175855329710021844122.28%1132875.22%1681125454.31%584113251.59%42980153.56%11947161046455922479
_Vs Conference371890161213911821191250010166511518640151173676480.64913922035901464051313284664314241712544271867181353022.22%842175.00%0681125454.31%584113251.59%42980153.56%841502751328658338
_Vs Division191240021079552497200000291811105200210503713280.73779128207012521322689238238212660721395373731824.66%401172.50%0681125454.31%584113251.59%42980153.56%440266373168336174

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
5269W420232552718641758553297100201
All Games
GPWLOTWOTL SOWSOLGFGA
5226132623202161
Home Games
GPWLOTWOTL SOWSOLGFGA
2516601029166
Visitor Games
GPWLOTWOTL SOWSOLGFGA
27107252111195
Last 10 Games
WLOTWOTL SOWSOL
720100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1844122.28%1132875.22%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
640593618296457775
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
681125454.31%584113251.59%42980153.56%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
11947161046455922479


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2022-10-172Coyotes2Blues3WBoxScore
2 - 2022-10-1817Blues4Blackhawks5LXBoxScore
3 - 2022-10-1937Avalanche4Blues2LBoxScore
4 - 2022-10-2054Blues3Canucks5LBoxScore
5 - 2022-10-2157Blues3Golden Knights4LXXBoxScore
7 - 2022-10-2382Ducks8Blues5LBoxScore
8 - 2022-10-2491Blues2Predators3LBoxScore
9 - 2022-10-25111Canucks4Blues6WBoxScore
11 - 2022-10-27128Blues3Kings4LXBoxScore
12 - 2022-10-28147Coyotes1Blues3WBoxScore
13 - 2022-10-29164Wild5Blues4LBoxScore
15 - 2022-10-31181Blues4Coyotes7LBoxScore
16 - 2022-11-01190Blues3Sharks2WXBoxScore
17 - 2022-11-02207Sharks5Blues4LXXBoxScore
19 - 2022-11-04228Predators2Blues4WBoxScore
20 - 2022-11-05246Blues6Avalanche3WBoxScore
21 - 2022-11-06259Blues8Jets4WBoxScore
22 - 2022-11-07272Golden Knights3Blues2LXBoxScore
23 - 2022-11-08291Blues2Panthers4LBoxScore
24 - 2022-11-09301Senators4Blues3LXXBoxScore
25 - 2022-11-10320Panthers3Blues2LBoxScore
26 - 2022-11-11337Blues6Blackhawks5WXXBoxScore
27 - 2022-11-12349Coyotes1Blues2WBoxScore
29 - 2022-11-14372Blues6Stars1WBoxScore
30 - 2022-11-15384Blues6Canadiens1WBoxScore
31 - 2022-11-16395Ducks3Blues2LBoxScore
32 - 2022-11-17415Golden Knights1Blues2WBoxScore
33 - 2022-11-18431Penguins2Blues4WBoxScore
35 - 2022-11-20447Blues3Devils2WBoxScore
36 - 2022-11-21462Blues5Maple Leafs6LBoxScore
37 - 2022-11-22476Predators2Blues5WBoxScore
38 - 2022-11-23496Blues9Blue Jackets3WBoxScore
39 - 2022-11-24507Wild1Blues4WBoxScore
40 - 2022-11-25517Blues5Jets6LXBoxScore
41 - 2022-11-26535Blues5Red Wings4WXXBoxScore
42 - 2022-11-27548Canucks4Blues8WBoxScore
44 - 2022-11-29571Sharks1Blues4WBoxScore
45 - 2022-11-30581Blues2Sharks5LBoxScore
46 - 2022-12-01599Flames1Blues3WBoxScore
48 - 2022-12-03613Blues3Flames4LXBoxScore
49 - 2022-12-04627Blues4Flyers2WBoxScore
50 - 2022-12-05639Flyers2Blues7WBoxScore
52 - 2022-12-07661Flames3Blues1LBoxScore
53 - 2022-12-08674Blues3Flames4LXBoxScore
54 - 2022-12-09691Jets0Blues2WBoxScore
55 - 2022-12-10707Blues5Blackhawks2WBoxScore
56 - 2022-12-11723Whalers1Blues4WBoxScore
58 - 2022-12-13740Blues1Senators4LBoxScore
59 - 2022-12-14746Blues4Stars1WBoxScore
60 - 2022-12-15767Maple Leafs3Blues5WBoxScore
61 - 2022-12-16780Blues3Kings2WBoxScore
62 - 2022-12-17788Blues3Islanders2WXBoxScore
63 - 2022-12-18803Islanders-Blues-
64 - 2022-12-19818Blues-Avalanche-
66 - 2022-12-21833Kings-Blues-
67 - 2022-12-22850Blues-Ducks-
68 - 2022-12-23864Red Wings-Blues-
70 - 2022-12-25886Blues-Canucks-
71 - 2022-12-26894Jets-Blues-
73 - 2022-12-28917Blackhawks-Blues-
74 - 2022-12-29935Rangers-Blues-
75 - 2022-12-30947Blues-Capitals-
76 - 2022-12-31963Blues-Lightning-
78 - 2023-01-02977Blackhawks-Blues-
79 - 2023-01-03984Blues-Predators-
80 - 2023-01-041002Blues-Rangers-
81 - 2023-01-051014Lightning-Blues-
82 - 2023-01-061032Blues-Ducks-
83 - 2023-01-071047Avalanche-Blues-
86 - 2023-01-101071Canadiens-Blues-
87 - 2023-01-111083Blues-Penguins-
88 - 2023-01-121098Blues-Sabres-
89 - 2023-01-131106Blues-Bruins-
90 - 2023-01-141118Stars-Blues-
91 - 2023-01-151138Blues-Whalers-
92 - 2023-01-161145Kings-Blues-
93 - 2023-01-171169Devils-Blues-
Trade Deadline --- Trades can’t be done after this day is simulated!
95 - 2023-01-191188Blues-Oilers-
96 - 2023-01-201204Oilers-Blues-
97 - 2023-01-211225Capitals-Blues-
99 - 2023-01-231246Blues-Oilers-
100 - 2023-01-241258Lightning-Blues-
101 - 2023-01-251275Blues-Golden Knights-
102 - 2023-01-261287Blues-Coyotes-
103 - 2023-01-271297Stars-Blues-
104 - 2023-01-281304Blues-Golden Knights-
106 - 2023-01-301323Oilers-Blues-
108 - 2023-02-011349Bruins-Blues-
111 - 2023-02-041376Sabres-Blues-
112 - 2023-02-051380Blues-Wild-
115 - 2023-02-081405Blue Jackets-Blues-
116 - 2023-02-091415Blues-Wild-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2Level 3Level 4Luxury
Capacity60005000200040001000
Ticket Price91603521170
Attendance140,581118,02747,59895,40123,775
Attendance PCT93.72%94.42%95.20%95.40%95.10%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
21 17015 - 94.53% 1,644,101$41,102,534$18000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches SalariesSpecial Salary Cap Value
38,194,878$ 68,471,499$ 59,387,000$ 0$ -3,471,000$
Salary Cap Per DaysSalary Cap To DateLuxury Taxe TotalPlayers In Salary CapPlayers Out of Salary Cap
580,267$ 37,406,744$ 0$ 20 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
34,526,129$ 56 592,979$ 33,206,824$

Team Total Estimate
Estimated Season Expenses Current Bank Account Projected Bank Account
35,522,811$ 225,677,897$ 226,823,799$
Estimated Season Salary CapAvailable Salary CapMaximum Salary CapOver Minimum Salary Cap
66,430,696$ 4,069,304$ 70,500,000$ 11,930,696$



Depth Chart

Left WingCenterRight Wing
Evander KaneAGE:31PO:83OV:77
Boone JennerAGE:29PO:82OV:77
Alex KillornAGE:33PO:79OV:77
Max PaciorettyAGE:34PO:79OV:74
Travis KonecnyAGE:25PO:73OV:72
Pavel ZachaAGE:25PO:72OV:71
Oskar LindblomAGE:26PO:69OV:68
Christian FischerAGE:25PO:65OV:68
Austin WatsonAGE:31PO:68OV:67
Nico SturmAGE:27PO:67OV:67
Antoine RousselAGE:33PO:63OV:66
Andrew AgozzinoAGE:32PO:62OV:63
Joseph BlandisiAGE:28PO:62OV:63
John LeonardAGE:24PO:61OV:61
Beck MalenstynAGE:24PO:61OV:60
Ryan MacInnisAGE:26PO:60OV:60
Maxim Golod (R)AGE:22PO:52OV:52
Brayden PointAGE:26PO:81OV:79
Boone JennerAGE:29PO:82OV:77
Brock NelsonAGE:31PO:81OV:75
Pavel ZachaAGE:25PO:72OV:71
Nico SturmAGE:27PO:67OV:67
Justin DanforthAGE:29PO:69OV:65
Andrew AgozzinoAGE:32PO:62OV:63
Joseph BlandisiAGE:28PO:62OV:63
Ryan MacInnisAGE:26PO:60OV:60
Jimmy HuntingtonAGE:24PO:60OV:60
Dino Kambeitz (R)AGE:23PO:55OV:55
Jordy BelleriveAGE:23PO:54OV:55
Tanner KaspickAGE:24PO:55OV:54
Evander KaneAGE:31PO:83OV:77
Vladimir TarasenkoAGE:31PO:80OV:76
Cam AtkinsonAGE:33PO:78OV:74
Travis KonecnyAGE:25PO:73OV:72
Christian FischerAGE:25PO:65OV:68
Austin WatsonAGE:31PO:68OV:67
Justin DanforthAGE:29PO:69OV:65
John LeonardAGE:24PO:61OV:61
Beck MalenstynAGE:24PO:61OV:60
Trey Fix-WolanskyAGE:23PO:60OV:59
Dino Kambeitz (R)AGE:23PO:55OV:55
D.J. Busdeker (R)AGE:23PO:53OV:55
Alex-Olivier VoyerAGE:23PO:53OV:53

Defense #1Defense #2Goalie
Kris LetangAGE:35PO:72OV:80
Shayne GostisbehereAGE:29PO:71OV:75
Jakob ChychrunAGE:24PO:69OV:75
Adam LarssonAGE:30PO:65OV:75
Jonas BrodinAGE:29PO:66OV:74
Jani HakanpaaAGE:30PO:63OV:72
Greg PaterynAGE:32PO:61OV:68
Philippe MyersAGE:26PO:59OV:68
Lucas CarlssonAGE:25PO:57OV:61
Jarred TinordiAGE:30PO:50OV:61
Dylan McIlrathAGE:30PO:50OV:60
Cavan FitzgeraldAGE:26PO:51OV:58
Andreas BorgmanAGE:27PO:57OV:57
Matthew HellicksonAGE:24PO:50OV:53
Vitek VanecekAGE:27PO:74OV:75
Scott WedgewoodAGE:30PO:72OV:72
Alex NedeljkovicAGE:27PO:68OV:68
Kaden Fulcher (R)AGE:24PO:45OV:49
Garrett Metcalf (R)AGE:26PO:45OV:48

Prospects

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Prospect Team NameDraft Year Overall Pick Information Lien
Aaron IrvingBlues2014162
Adam ParsellsBlues2015164
Alex MalletBlues
Alexandre RangerBlues
Andrei SvetlakovBlues2017184
Antoine WakedBluesLink
Borna RendulicBlues
Brady BrassartBlues
Brent MoranBlues2014115
Brett FindlayBlues
Brock BeukeboomBlues
Cade FairchildBlues
Calle AnderssonBlues
Carl KlingbergBlues
Chris CarlisleBlues
Christian FolinBluesLink
Cole JordanBlues2021153
Danil SavunovBlues2019187
Dmitri SemykinBluesLink
Dmitriy ZaitsevBlues2016205
Ethan Del MastroBlues2021111
Evgeni DadonovBlues
Frankie SimonelliBlues
Ian ScottBlues201788
Jackson HallumBlues202095
Jake ChiassonBlues2021122
James FisherBlues2022211
Jaromir PytlikBlues2020100
Jeremy HelvigBlues
Jeremy MichelBlues2019217
Joel ChampagneBlues
Jonas JunlandBlues
Jordan CaronBlues
Julius BergmanBlues
Kalle VaisanenBlues2021113
Kris BindulisBlues
Kyle KukkonenBlues2021165
Liam GormanBlues2018190
Manuel WiedererBluesLink
Marian HossaBlues
Mason LangenbrunnerBlues2020153
Mat BodieBlues
Matt ClarkBlues
Matt HackettBlues
Matt NiskanenBluesLink
Matt UstaskiBlues2014192
Maximilian PajpachBlues2014175
Nail YakupovBlues
Nathan SchnarrBluesLink
Nick BaptisteBluesLink
Nolan De JongBlues
Owen McLaughlinBlues2021215
Patrik BerglundBlues
Peter HollandBlues
Raivis AnsonsBlues2020151
Rory KerinsBlues2020184
Sam HenleyBlues
Sean TschigerlBlues2021138
Sebastian WannstromBlues
Sergey AndronovBlues
Sergey TolchinskyBlues
Stefan Della RovereBlues
Talyn BoykoBlues2021106
Viktor LoovBlues
Ville MeskanenBluesLink

Draft Picks

Year R1R2R3R4R5R6R7
2023
2024
2025
2026
2027









[1/26/2023 12:45:58 PM] Successfully loaded Blues lines done with STHS Client - 3.3.6.6
[1/25/2023 2:29:41 PM] Both Blues and Thunderbirds lines for next game are empty. Current rosters/lines are not erased.
[1/25/2023 2:29:41 PM] Last 30 Days Farm Star : 1 - Oskar Lindblom of Thunderbirds (24-19-43) / 2 - Owen Tippett of Wild (16-14-30) / 3 - Christian Fischer of Thunderbirds (15-23-38)
[1/25/2023 2:29:39 PM] Game 714 - Andrew Agozzino from Thunderbirds is injured (Bruised Left Arm) and is out for 1 week.



Andrew Agozzino is out for 3 days because of a Bruised Left Arm Injury.



OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
20209049230454532924980452412032221671264145251101323162123391243295338623010011011116325511341041104865271086946518453096320.39%1803381.67%41230223655.01%1131206354.82%743134255.37%2059123618018021599812
2021904431065313653065945231601410166154124521150512119915247112365594959201081361121331921088108599740284390349417553296319.15%2234878.48%51134206255.00%1044184656.55%777145753.33%2037120017857941621836
2022522613026232021614125166001029166252710702521111951669202325527016457775186464059361829175855329710021844122.28%1132875.22%1681125454.31%584113251.59%42980153.56%11947161046455922479
Total Regular Season232119670121699896716180115633404734424346781175633089654723701023058961452234851272303300348311286227192663134731123251256460282216720.32%51610978.88%103045555254.85%2759504154.73%1949360054.14%529131534634205341442128
Playoff
202020101000000615291165000003227594500000292542061971581011291927112262432202261018213136849918.37%63788.89%128451655.04%27148855.53%17329458.84%432254443183354170
2021404000001016-62020000079-22020000037-4010172710154014444405191334637112800.00%16287.50%04910845.37%508459.52%266241.94%895091407936
Total Playoff2410140000071683136700000393631147000003232020711141852012342328552702832713174322816848057915.79%79988.61%133362453.37%32157256.12%19935655.90%522304534224434206