Please rotate your device to landscape mode for a better experience.
Connexion

Gulls
GP: 26 | W: 14 | L: 10 | OTL: 2 | P: 30
GF: 55 | GA: 63 | PP%: 23.81% | PK%: 76.06%
DG: Roger Storoschuk | Morale : 52 | Moyenne d’équipe : 60
Prochains matchs #406 vs Wolf Pack

Centre de jeu
Gulls
14-10-2, 30pts
2
3 Americans
14-8-4, 32pts
Team Stats
OTL2SéquenceL1
7-5-1Fiche domicile9-2-2
7-5-1Fiche domicile5-6-2
4-4-2Derniers 10 matchs4-4-2
2.12Buts par match 3.58
2.42Buts contre par match 2.92
23.81%Pourcentage en avantage numérique25.00%
76.06%Pourcentage en désavantage numérique77.63%
Penguins
10-13-3, 23pts
2
1 Gulls
14-10-2, 30pts
Team Stats
W2SéquenceOTL2
6-5-2Fiche domicile7-5-1
4-8-1Fiche domicile7-5-1
4-4-2Derniers 10 matchs4-4-2
2.04Buts par match 2.12
2.38Buts contre par match 2.42
28.33%Pourcentage en avantage numérique23.81%
60.42%Pourcentage en désavantage numérique76.06%
Gulls
14-10-2, 30pts
Jour 34
Wolf Pack
12-13-2, 26pts
Statistiques d’équipe
OTL2SéquenceL2
7-5-1Fiche domicile5-7-0
7-5-1Fiche visiteur7-6-2
4-4-210 derniers matchs3-5-2
2.12Buts par match 2.63
2.42Buts contre par match 2.63
23.81%Pourcentage en avantage numérique28.07%
76.06%Pourcentage en désavantage numérique72.06%
Gulls
14-10-2, 30pts
Jour 35
Admirals
12-11-2, 26pts
Statistiques d’équipe
OTL2SéquenceL1
7-5-1Fiche domicile6-7-0
7-5-1Fiche visiteur6-4-2
4-4-210 derniers matchs3-7-0
2.12Buts par match 2.56
2.42Buts contre par match 2.56
23.81%Pourcentage en avantage numérique36.96%
76.06%Pourcentage en désavantage numérique62.50%
Stars
17-8-1, 35pts
Jour 36
Gulls
14-10-2, 30pts
Statistiques d’équipe
W8SéquenceOTL2
8-4-1Fiche domicile7-5-1
9-4-0Fiche visiteur7-5-1
9-1-010 derniers matchs4-4-2
2.73Buts par match 2.12
2.15Buts contre par match 2.12
22.92%Pourcentage en avantage numérique23.81%
68.89%Pourcentage en désavantage numérique76.06%
Meneurs d'équipe
Buts
Cole Smith
8
Jan RuttaPasses
Jan Rutta
12
Points
Cole Smith
18
Ryan LombergPlus/Moins
Ryan Lomberg
3
Jake AllenVictoires
Jake Allen
14
Jake AllenPourcentage d’arrêts
Jake Allen
0.888

Statistiques d’équipe
Buts pour
55
2.12 GFG
Tirs pour
452
17.38 Avg
Pourcentage en avantage numérique
23.8%
15 GF
Début de zone offensive
32.5%
Buts contre
63
2.42 GAA
Tirs contre
546
21.00 Avg
Pourcentage en désavantage numérique
76.1%%
17 GA
Début de la zone défensive
41.4%
Informations de l'équipe

Directeur généralRoger Storoschuk
EntraîneurRick Tocchet
DivisionDivision 1
ConférenceConference 1
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance1,819
Billets de saison1,500


Informations de la formation

Équipe Pro26
Équipe Mineure18
Limite contact 44 / 100
Espoirs70


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Anthony BeauvillierX100.0082449582666398614061716375767970546702811,430,000$
2Cole SmithXX100.0088957379776588624960588225656666696703032,500,000$
3Mikael Pyyhtia (R)X100.006541968566629062555661752553536461640241897,500$
4Sam LaffertyXXX100.0080458783765577625756596825687063576403022,200,000$
5Ryan LombergXX100.0080948182665297623462576725687064666403131,500,000$
6Bradly Nadeau (R)X100.0069638372647982665060686266454567656302031,422,000$
7Jared DavidsonX100.007167796968798461785364616245456359610233842,000$
8Cole Schwindt (R)X100.007544997976546160686556642549496160610241934,000$
9Ryder RolstonX100.008075936776555459505559655645456162590241825,000$
10Rhett Pitlick (R)XXX100.0073629981633732587368446142454556605702531,352,000$
11Brandon CoeX100.007674856475525349504846614545455359540241925,000$
12Julian Lutz (R)X100.0077729364734848495048446243454553595302131,258,000$
13Francesco Arcuri (R)X100.0076748681754546435537436042454550545302231,268,000$
14Jan RuttaX100.0069438485767271632551518525707362687003522,900,000$
15Matt GrzelcykX100.0064419472658199742570477325737764536903221,800,000$
16Connor MackeyX100.0074815867817784512545426140484853516102911,319,000$
17Elias Salomonsson (R)X100.0075708767716568532550426140454554595902131,284,000$
18Dysin MayoX100.0069706265706873522540495846454553585702921,934,000$
19Marek Alscher (R)X100.0076748064756469452536396038454550625702131,286,000$
Rayé
1Riley Hughes (R)XXX100.0077728762724342496147466244444453245202531,319,000$
2Kyle Masters (R)X100.0075669561663837462536416039444450295202231,037,000$
MOYENNE D’ÉQUIPE100.00756586737160695745535265415353595760
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire
1Jake Allen100.007361627778697476817375717371777203521,650,000$
2Spencer Knight100.006868667872637167696761565768626702422,472,000$
Rayé
1Brett Brochu (R)100.004440506345894549908145444460375802331,000,000$
2Devin Cooley100.005240508257565157585730444454375502821,750,000$
3Vadim Zherenko100.00495063844950505550503044445137530241846,667$
MOYENNE D’ÉQUIPE100.0057525877606558617066485252615061
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Rick Tocchet83788383848476CAN5445,000,000$


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Cole SmithGulls (ANA)LW/RW2481018-84830483847172717.02%848120.06448949000001155.17%5896010.7501402302
2Jan RuttaGulls (ANA)D26512171120254145141611.11%2465125.05336956000151300%02121000.5200000133
3Anthony BeauvillierGulls (ANA)LW248816-1120273963143512.70%852121.7224610500000332037.65%85233010.6100000102
4Cole SchwindtGulls (ANA)RW2541115100182926112015.38%630812.340110241011252052.48%28278000.9700000311
5Ryan LombergGulls (ANA)LW/RW268715395394360163013.33%1154120.841127410000512042.22%901315000.5511100210
6Mikael PyyhtiaGulls (ANA)LW265611020283935102614.29%847318.23213841000170044.29%21948000.4600000110
7Ryder RolstonGulls (ANA)RW263811-47537252651511.54%643816.881676520002201040.00%11046000.5001001011
8Dysin MayoGulls (ANA)D261890532549382311104.35%3468526.37022052000048000%0218000.2600023111
9Bradly NadeauGulls (ANA)LW263472155352729152210.34%1050219.34000050002401071.43%14610000.2800100011
10Sam LaffertyGulls (ANA)C/LW/RW26257-5752932258198.00%439215.11000080001291052.31%19574000.3600010100
11Rhett PitlickGulls (ANA)C/LW/RW26156-3552928228214.55%737014.25022117000000046.67%15115000.3201001020
12Dakota JoshuaDucksC/LW/RW2303222103062850.00%03115.981011100000000%112001.8800020001
13Jordan GreenwayDucksLW/RW2022255159040%04321.8301121011240066.67%600000.9200010000
14Matt GrzelcykGulls (ANA)D2511210072214577.14%1138715.50101127000116000%025000.1000000000
15Elias SalomonssonGulls (ANA)D26112-240242813827.69%1856321.66000239000138000%0411000.0700000000
16Connor MackeyGulls (ANA)D24011-435521114220%831613.190000300005000%018000.0600010000
17Jared DavidsonGulls (ANA)C26101-2180252031533.33%230011.5600000000040056.52%2324000.0700000001
18Kyle MastersGulls (ANA)D2000000000000%0136.850000000000000%00000000000000
19Josh MansonDucksD2000040231000%24422.340000000002000%01300000000000
20Brandon CoeGulls (ANA)RW26000200520000%0943.630000200000000%00200000000000
21Julian LutzGulls (ANA)LW26000000520000%0451.750000000000000%00000000000000
22Marek AlscherGulls (ANA)D26000-9191525261210%1846117.77000015000057000%011400000102000
23Francesco ArcuriGulls (ANA)C22000100000000%0311.43000000000000100.00%31000000000000
Statistiques d’équipe totales ou en moyenne4905489143-3326711548249845214927011.95%185770415.72152540564921121243813148.14%1101120153020.3714779131113
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Jake AllenGulls (ANA)26141020.8882.3015110558516257111.0004260121
2Spencer KnightGulls (ANA)20000.8624.535300429160000026000
Statistiques d’équipe totales ou en moyenne28141020.8862.38156405625452731142626121


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Pays Recrue Poids Taille Non-échange Disponible pour échange Acquis Par Date de la Dernière Transaction Ballotage forcé Waiver Possible Contrat Date du Signature du Contrat Forcer UFA Rappel d'urgence Type Salaire actuel Salaire restantPlafond salarial Plafond salarial restant Exclus du plafond salarial Salaire année 2Salaire année 3Salaire année 4Salaire année 5Salaire année 6Salaire année 7Salaire année 8Salaire année 9Salaire année 10Plafond salarial année 2Plafond salarial année 3Plafond salarial année 4Plafond salarial année 5Plafond salarial année 6Plafond salarial année 7Plafond salarial année 8Plafond salarial année 9Plafond salarial année 10Non-échange année 2Non-échange année 3Non-échange année 4Non-échange année 5Non-échange année 6Non-échange année 7Non-échange année 8Non-échange année 9Non-échange année 10Lien
Anthony BeauvillierGulls (ANA)LW281997-06-08CANNo180 Lbs5 ft11NoNoN/ANoNo1FalseFalsePro & Farm1,430,000$1,008,661$0$0$No---------------------------Lien / Lien NHL
Bradly NadeauGulls (ANA)LW202005-05-05CANYes172 Lbs5 ft11NoNoDraftNoNo32025-10-22FalseFalsePro & Farm1,422,000$1,003,018$0$0$No1,422,000$1,422,000$-------1,422,000$1,422,000$-------NoNo-------Lien
Brandon CoeGulls (ANA)RW242001-12-01CANNo190 Lbs6 ft4NoNoN/ANoNo1FalseFalsePro & Farm925,000$652,455$0$0$No---------------------------Lien
Brett BrochuGulls (ANA)G232002-09-09CANYes176 Lbs6 ft0NoNoProspectNoNo32025-10-22FalseFalsePro & Farm1,000,000$705,357$0$0$No1,000,000$1,000,000$-------1,000,000$1,000,000$-------NoNo-------Lien
Cole SchwindtGulls (ANA)RW242001-04-25CANYes203 Lbs6 ft2NoNoN/ANoNo1FalseFalsePro & Farm934,000$658,804$0$0$No---------------------------Lien
Cole SmithGulls (ANA)LW/RW301995-10-28USANo195 Lbs6 ft3NoNoAssign ManuallyNoNo32025-11-06FalseFalsePro & Farm2,500,000$1,763,393$0$0$No2,500,000$2,500,000$-------2,500,000$2,500,000$-------NoNo-------Lien
Connor MackeyGulls (ANA)D291996-09-12USANo205 Lbs6 ft3NoNoN/ANoNo1FalseFalsePro & Farm1,319,000$930,366$0$0$No---------------------------Lien
Devin CooleyGulls (ANA)G281997-05-25USANo188 Lbs6 ft5NoNoAssign ManuallyNoNo22024-09-10FalseFalsePro & Farm1,750,000$1,234,375$0$0$No1,750,000$--------1,750,000$--------No--------Lien
Dysin MayoGulls (ANA)D291996-08-17CANNo190 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm1,934,000$1,364,161$0$0$No1,934,000$--------1,934,000$--------No--------Lien / Lien NHL
Elias SalomonssonGulls (ANA)D212004-08-31SWEYes189 Lbs6 ft2NoNoProspectNoNo32025-10-22FalseFalsePro & Farm1,284,000$905,679$0$0$No1,284,000$1,284,000$-------1,284,000$1,284,000$-------NoNo-------Lien
Francesco ArcuriGulls (ANA)C222003-06-13CANYes200 Lbs6 ft1NoNoProspectNoNo32025-10-22FalseFalsePro & Farm1,268,000$894,393$0$0$No1,268,000$1,268,000$-------1,268,000$1,268,000$-------NoNo-------Lien
Jake AllenGulls (ANA)G351990-08-07CANNo197 Lbs6 ft2NoNoAssign ManuallyNoNo22024-09-10FalseFalsePro & Farm1,650,000$1,163,839$0$0$No1,650,000$--------1,650,000$--------No--------Lien / Lien NHL
Jan RuttaGulls (ANA)D351990-07-29CZENo204 Lbs6 ft3NoNoAssign ManuallyNoNo22024-09-16FalseFalsePro & Farm2,900,000$2,045,536$0$0$No2,900,000$--------2,900,000$--------No--------Lien / Lien NHL
Jared DavidsonGulls (ANA)C232002-07-07CANNo183 Lbs6 ft0NoNoN/ANoNo32025-05-01FalseFalsePro & Farm842,000$593,911$0$0$No842,000$842,000$-------842,000$842,000$-------NoNo-------Lien
Julian LutzGulls (ANA)LW212004-02-29GERYes192 Lbs6 ft2NoNoProspectNoNo32025-10-22FalseFalsePro & Farm1,258,000$887,339$0$0$No1,258,000$1,258,000$-------1,258,000$1,258,000$-------NoNo-------Lien
Kyle MastersGulls (ANA)D222003-04-09ABYes175 Lbs6 ft1NoNoN/ANoNo32025-10-17FalseFalsePro & Farm1,037,000$731,455$0$0$No1,037,000$1,037,000$-------1,037,000$1,037,000$-------NoNo-------Lien
Marek AlscherGulls (ANA)D212004-04-07CZEYes196 Lbs6 ft3NoNoProspectNoNo32025-10-22FalseFalsePro & Farm1,286,000$907,089$0$0$No1,286,000$1,286,000$-------1,286,000$1,286,000$-------NoNo-------Lien
Matt GrzelcykGulls (ANA)D321994-01-05USANo180 Lbs5 ft10NoNoAssign ManuallyNoNo22024-09-10FalseFalsePro & Farm1,800,000$1,269,643$0$0$No1,800,000$--------1,800,000$--------No--------Lien / Lien NHL
Mikael PyyhtiaGulls (ANA)LW242001-12-17FINYes176 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm897,500$633,058$0$0$No---------------------------Lien
Rhett PitlickGulls (ANA)C/LW/RW252001-02-07USAYes170 Lbs5 ft10NoNoProspectNoNo32025-10-22FalseFalsePro & Farm1,352,000$953,643$0$0$No1,352,000$1,352,000$-------1,352,000$1,352,000$-------NoNo-------Lien
Riley HughesGulls (ANA)C/LW/RW252000-06-27USAYes194 Lbs6 ft2NoNoProspectNoNo32025-10-22FalseFalsePro & Farm1,319,000$930,366$0$0$No1,319,000$1,319,000$-------1,319,000$1,319,000$-------NoNo-------Lien
Ryan LombergGulls (ANA)LW/RW311994-12-09CANNo184 Lbs5 ft9NoNoAssign ManuallyNoNo32025-11-06FalseFalsePro & Farm1,500,000$1,058,036$0$0$No1,500,000$1,500,000$-------1,500,000$1,500,000$-------NoNo-------Lien / Lien NHL
Ryder RolstonGulls (ANA)RW242001-10-31USANo200 Lbs6 ft2NoNoN/ANoNo12025-05-01FalseFalsePro & Farm825,000$581,920$0$0$No---------------------------Lien
Sam LaffertyGulls (ANA)C/LW/RW301995-03-06USANo205 Lbs6 ft2NoNoAssign ManuallyNoNo22024-09-10FalseFalsePro & Farm2,200,000$1,551,786$0$0$No2,200,000$--------2,200,000$--------No--------Lien / Lien NHL
Spencer KnightGulls (ANA)G242001-04-19USANo191 Lbs6 ft3NoNoN/ANoNo2FalseFalsePro & Farm2,472,000$1,743,643$0$0$No2,472,000$--------925,000$--------No--------Lien
Vadim ZherenkoGulls (ANA)G242001-03-15RUSNo207 Lbs6 ft4NoNoN/ANoNo1FalseFalsePro & Farm846,667$597,203$0$0$No---------------------------Lien
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
2625.92190 Lbs6 ft12.191,459,660$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Anthony BeauvillierSam LaffertyCole Smith40122
2Ryan LombergMikael PyyhtiaBradly Nadeau30122
3Anthony BeauvillierRyan LombergJared Davidson20122
4Ryder RolstonCole SmithRhett Pitlick10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Jan RuttaDysin Mayo35122
2Connor MackeyElias Salomonsson30122
3Marek AlscherDysin Mayo25122
4Dysin MayoJan Rutta10122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Anthony BeauvillierRyder RolstonCole Smith60122
2Mikael PyyhtiaRhett PitlickRyan Lomberg40122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Jan RuttaDysin Mayo60122
2Marek AlscherElias Salomonsson40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Anthony BeauvillierRyan Lomberg60122
2Ryder RolstonBradly Nadeau40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Marek AlscherDysin Mayo60122
2Jan RuttaElias Salomonsson40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Ryan Lomberg60122Jan RuttaDysin Mayo60122
2Ryder Rolston40122Marek AlscherElias Salomonsson40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Ryan LombergAnthony Beauvillier60122
2Ryder RolstonJared Davidson40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Dysin MayoMarek Alscher60122
2Elias SalomonssonJan Rutta40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Anthony BeauvillierRyan LombergCole SmithJan RuttaConnor Mackey
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Anthony BeauvillierRyan LombergCole SmithJan RuttaConnor Mackey
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Ryan Lomberg, Ryder Rolston, Rhett PitlickRyan Lomberg, Cole SmithRyan Lomberg
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Marek Alscher, Jan Rutta, Dysin MayoDysin MayoJan Rutta, Dysin Mayo
Tirs de pénalité
Ryder Rolston, Cole Smith, Rhett Pitlick, Ryan Lomberg, Anthony Beauvillier
Gardien
#1 : Jake Allen, #2 : Spencer Knight


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Americans1000010023-1000000000001000010023-110.5002460061532220100116235531101617200.00%3166.67%017935650.28%19845343.71%15328653.50%449168484282632316
2Barracuda2110000015-4000000000002110000015-420.500123016153221810011623553062129100.00%8275.00%017935650.28%19845343.71%15328653.50%449168484282632316
3Bruins2010001045-12010001045-10000000000020.50045910615322291001162355217104011100.00%5180.00%017935650.28%19845343.71%15328653.50%449168484282632316
4Canucks11000000312000000000001100000031221.000336006153222110011623551481115000%3166.67%117935650.28%19845343.71%15328653.50%449168484282632316
5Comets1010000002-21010000002-20000000000000.00000000615322810011623551451012300.00%5180.00%017935650.28%19845343.71%15328653.50%449168484282632316
6Condors3210000058-3110000001012110000048-440.6675813016153226210011623557528545210330.00%7185.71%017935650.28%19845343.71%15328653.50%449168484282632316
7Crunch22000000725220000007250000000000041.000712190061532238100116235521933395360.00%4175.00%017935650.28%19845343.71%15328653.50%449168484282632316
8Islanders11000000541110000005410000000000021.0005914006153222110011623554776244125.00%30100.00%017935650.28%19845343.71%15328653.50%449168484282632316
9Moose2010100057-21010000014-31000100043120.50059140061532223100116235532811504250.00%3166.67%017935650.28%19845343.71%15328653.50%449168484282632316
10Penguins1000010012-11000010012-10000000000010.5001230061532291001162355662192150.00%10100.00%017935650.28%19845343.71%15328653.50%449168484282632316
11Reign2020000037-41010000035-21010000002-200.00034700615322341001162355722220338112.50%10460.00%017935650.28%19845343.71%15328653.50%449168484282632316
12Silver Knights32100000660110000004132110000025-340.6676111701615322691001162355612332548112.50%6266.67%017935650.28%19845343.71%15328653.50%449168484282632316
13Wild20200000310-71010000023-11010000017-600.0003580061532239100116235583233030200.00%10190.00%017935650.28%19845343.71%15328653.50%449168484282632316
14Wolf Pack22000000707110000005051100000020241.00071118026153223210011623552217547700.00%000%017935650.28%19845343.71%15328653.50%449168484282632316
15Wolves11000000312000000000001100000031221.000347006153222910011623551766216233.33%3166.67%017935650.28%19845343.71%15328653.50%449168484282632316
Total261210012105563-8136500110332851365011002235-13300.5775589144156153224521001162355546185267482631523.81%711776.06%117935650.28%19845343.71%15328653.50%449168484282632316
_Since Last GM Reset261210012105563-8136500110332851365011002235-13300.5775589144156153224521001162355546185267482631523.81%711776.06%117935650.28%19845343.71%15328653.50%449168484282632316
_Vs Conference19117000103940-1953000102313101064000001627-11240.6323961100156153223451001162355358132212339431023.26%511178.43%117935650.28%19845343.71%15328653.50%449168484282632316
_Vs Division1195000101827-935200010862843000001021-11200.9091828460361532220410011623552528713818327518.52%341070.59%117935650.28%19845343.71%15328653.50%449168484282632316

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
2630OTL2558914445254618526748215
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
26121012105563
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
136501103328
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
136511002235
Derniers 10 matchs
WLOTWOTL SOWSOL
440200
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
631523.81%711776.06%1
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
1001162355615322
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
17935650.28%19845343.71%15328653.50%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
449168484282632316


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
212Crunch1Gulls4WSommaire du match
332Gulls3Canucks1WSommaire du match
440Gulls0Condors6LSommaire du match
558Bruins4Gulls2LSommaire du match
780Islanders4Gulls5WSommaire du match
888Gulls1Silver Knights5LSommaire du match
10105Gulls3Wolves1WSommaire du match
11116Wolf Pack0Gulls5WSommaire du match
12132Silver Knights1Gulls4WSommaire du match
13153Gulls2Wolf Pack0WSommaire du match
15169Wild3Gulls2LSommaire du match
16190Condors0Gulls1WSommaire du match
17200Gulls1Wild7LSommaire du match
18211Gulls1Silver Knights0WSommaire du match
19230Bruins1Gulls2WXXSommaire du match
20250Moose4Gulls1LSommaire du match
21252Gulls0Barracuda5LSommaire du match
22266Gulls4Condors2WSommaire du match
24286Gulls1Barracuda0WSommaire du match
26300Crunch1Gulls3WSommaire du match
27319Reign5Gulls3LSommaire du match
28331Gulls0Reign2LSommaire du match
29348Comets2Gulls0LSommaire du match
30362Gulls4Moose3WXSommaire du match
31376Gulls2Americans3LXSommaire du match
32394Penguins2Gulls1LXSommaire du match
34406Gulls-Wolf Pack-
35420Gulls-Admirals-
36435Stars-Gulls-
37456Americans-Gulls-
39474Roadrunners-Gulls-
40487Gulls-Stars-
41501Gulls-Griffins-
42512Gulls-Wolves-
43527Phantoms-Gulls-
44545Barracuda-Gulls-
45565Condors-Gulls-
46579Gulls-Penguins-
47590Gulls-Comets-
48604Gulls-Thunderbirds-
49620Silver Knights-Gulls-
50641Wolves-Gulls-
51649Gulls-Roadrunners-
52661Gulls-IceHogs-
53681Crunch-Gulls-
54701Senators-Gulls-
56716Gulls-Senators-
57729Wolf Pack-Gulls-
58747Gulls-Wild-
59760Wolf Pack-Gulls-
61780Gulls-Monsters-
62785Gulls-Marlies-
63799Gulls-Bruins-
64806Marlies-Gulls-
66833Griffins-Gulls-
68859Gulls-Bears-
69866Gulls-Rocket-
70878Thunderbirds-Gulls-
71895Islanders-Gulls-
73919Eagles-Gulls-
74931Gulls-Silver Knights-
76948Bruins-Gulls-
77965Gulls-Checkers-
78972Gulls-Phantoms-
80986Admirals-Gulls-
821015Heat-Gulls-
831033Gulls-Islanders-
841043IceHogs-Gulls-
861065Monsters-Gulls-
871080Gulls-Canucks-
881086Gulls-Crunch-
891102Marlies-Gulls-
901115Gulls-Eagles-
911129Gulls-Wild-
921144Wild-Gulls-
941165Gulls-Heat-
951172Wolves-Gulls-
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
971198Canucks-Gulls-
981207Gulls-Canucks-
1001228Canucks-Gulls-
1011240Gulls-Bruins-
1031262Bears-Gulls-
1051279Checkers-Gulls-
1061286Gulls-Crunch-
1071296Gulls-Condors-
1101322Rocket-Gulls-



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets4020
Assistance16,2577,393
Assistance PCT62.53%56.87%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
30 1819 - 60.64% 91,479$1,189,227$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursPlafond Salariale total des joueursSalaire des entraineurs
2,588,772$ 3,795,117$ 3,795,117$ 5,000,000$0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
33,885$ 1,115,553$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
2,744,370$ 79 78,528$ 6,203,712$




Gulls Leaders statistiques des joueurs (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Gulls Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Gulls Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Gulls Leaders statistiques des joueurs (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Gulls Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA