Please rotate your device to landscape mode for a better experience.
Login

Senators
GP: 22 | W: 10 | L: 10 | OTL: 2 | P: 22
GF: 76 | GA: 77 | PP%: 26.00% | PK%: 70.97%
GM : Brendan Cwik | Morale : 48 | Team Overall : 57
Next Games #356 vs Checkers

Game Center
Senators
10-10-2, 22pts
3
1 Moose
9-10-4, 22pts
Team Stats
W2StreakSOL1
7-3-1Home Record3-6-2
3-7-1Home Record6-4-2
5-4-1Last 10 Games4-4-2
3.45Goals Per Game2.00
3.50Goals Against Per Game2.61
26.00%Power Play Percentage20.34%
70.97%Penalty Kill Percentage82.22%
Moose
9-10-4, 22pts
0
2 Senators
10-10-2, 22pts
Team Stats
SOL1StreakW2
3-6-2Home Record7-3-1
6-4-2Home Record3-7-1
4-4-2Last 10 Games5-4-1
2.00Goals Per Game3.45
2.61Goals Against Per Game3.50
20.34%Power Play Percentage26.00%
82.22%Penalty Kill Percentage70.97%
Checkers
9-8-5, 23pts
Day 30
Senators
10-10-2, 22pts
Team Stats
L1StreakW2
6-4-2Home Record7-3-1
3-4-3Away Record3-7-1
3-5-2Last 10 Games5-4-1
2.55Goals Per Game3.45
3.00Goals Against Per Game3.45
30.61%Power Play Percentage26.00%
70.45%Penalty Kill Percentage70.97%
Senators
10-10-2, 22pts
Day 31
Thunderbirds
16-4-2, 34pts
Team Stats
W2StreakW10
7-3-1Home Record8-3-1
3-7-1Away Record8-1-1
5-4-1Last 10 Games10-0-0
3.45Goals Per Game4.59
3.50Goals Against Per Game4.59
26.00%Power Play Percentage36.67%
70.97%Penalty Kill Percentage81.16%
Phantoms
10-12-0, 20pts
Day 32
Senators
10-10-2, 22pts
Team Stats
L1StreakW2
5-6-0Home Record7-3-1
5-6-0Away Record3-7-1
4-6-0Last 10 Games5-4-1
3.09Goals Per Game3.45
3.32Goals Against Per Game3.45
25.00%Power Play Percentage26.00%
67.16%Penalty Kill Percentage70.97%
Team Leaders
Goals
Alexandre Texier
14
Assists
Tyson Kozak
19
Points
Tyson Kozak
25
Plus/Minus
Nate Smith
12
Wins
Domenic DiVincentiis
6
Save Percentage
Akira Schmid
0.859

Team Stats
Goals For
76
3.45 GFG
Shots For
648
29.45 Avg
Power Play Percentage
26.0%
13 GF
Offensive Zone Start
39.7%
Goals Against
77
3.50 GAA
Shots Against
471
21.41 Avg
Penalty Kill Percentage
71.0%%
18 GA
Defensive Zone Start
29.9%
Team Info

General ManagerBrendan Cwik
CoachBob Woods
DivisionDivision 2
ConferenceConference 1
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance2,192
Season Tickets1,500


Roster Info

Pro Team24
Farm Team18
Contract Limit42 / 100
Prospects117


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Tyson Kozak (R)X100.007743968068566962706166712546466758630231850,000$
2Logan Brown (R)X100.0086868666865654658063657061444466466202731,530,000$
3Hunter Haight (R)X100.0072668767677883597351626258454561646002131,314,000$
4Brad Lambert (R)X100.0071658674667783587162496146454559606002211,200,000$
5Nate SmithX100.0070658265657377577155556051454559615802731,409,000$
6Brendan Brisson (R)XXX100.007371787272677156695749614647475659580241925,000$
7Jakub BrabenecX100.0076699366707277526549516148454557545702231,107,000$
8Massimo Rizzo (R)X100.0075679265686163546852516148454557545602431,341,000$
9Cross HanasX100.007671866471525254504756625345455752550241925,000$
10Lukas SvejkovskyX100.006860858060363252503861575845455656530241925,000$
11Adam MechuraXXX100.0081739980733230445538446342444452435202311,000,000$
12Daemon Hunt (R)X100.007874886875707552254742623846465448600231902,500$
13Hunter McDonald (R)X100.0073786165797886482539416039454552585902331,192,000$
14Simon LundmarkX100.0076728664727481472537416139454553565902531,161,000$
15Mac HollowellX100.006561756661697353255439573745455356570271971,000$
16Aleksi Heimosalmi (R)X100.0070638665646773472537425740454552545602231,277,000$
17Luke Reid (R)X100.0079709981714547412528396037454549555602431,338,000$
18Hardy Haman AktellX100.0076748163744241502547396137454550525502731,154,000$
Scratches
1Alexandre TexierXX97.7367428976746254662564736380656667406402611,000,000$
2Henri NikkanenX100.008477996278383551645146654445455439540241925,000$
3Gavin HainX100.0073698262694140506344506048444454395202531,096,000$
TEAM AVERAGE99.89756786697159625350495162464646565357
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Domenic DiVincentiis (R)100.005454687655545157525330444454565502111,000,000$
2Ales Stezka100.005148608052515055515130444451415302911,000,000$
Scratches
1Akira Schmid100.004852658346485054484895484950565302531,272,000$
TEAM AVERAGE100.0051516480515150555051524546525154
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Bob Woods40404040404040CAN5211,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Tyson KozakSenators (OTT)C2261925-15533347330368.22%942419.290664420001230062.07%29206001.1802100131
2Alexandre TexierSenators (OTT)LW/RW20141024-555313883343716.87%1544122.0541513400001422136.55%539169001.0902010300
3Brad LambertSenators (OTT)C22101222840263874213513.51%438417.46134533000030256.15%187143001.1501000013
4Hunter HaightSenators (OTT)C2271118121210382943202516.28%837717.14235734000001053.33%15133000.9502101120
5Brendan BrissonSenators (OTT)C/LW/RW2281018-61810482965214112.31%841718.970002200114302057.58%992110000.8601002004
6Nate SmithSenators (OTT)C22771412115392342133216.67%439818.101232340001101052.17%23104010.7001001200
7Daemon HuntSenators (OTT)D223912-1211543353519158.57%3455925.41101330000133000%01112000.4300030000
8Logan BrownSenators (OTT)C115611-1135151629101717.24%422120.123147220003181045.95%3776000.9911001101
9Jakub BrabenecSenators (OTT)C22527-355271926101219.23%430213.77000111012182050.00%8104010.4600010100
10Mac HollowellSenators (OTT)D2207732202515181170%1241518.89022247011125000%027000.3400000010
11Hunter McDonaldSenators (OTT)D22156270204531287123.57%3054024.59101446000130000%089000.2200112100
12Lukas SvejkovskySenators (OTT)RW2242610018103782710.81%226912.23000010000191075.00%4131000.4500000000
13Massimo RizzoSenators (OTT)C22325-40019142571912.00%325911.7900000000000133.33%651000.3900000000
14Cross HanasSenators (OTT)LW2232519532262352013.04%424611.1900000000180042.31%5274000.4100010010
15Simon LundmarkSenators (OTT)D22044-134202935201070%1850623.04000030000125000%0912000.1601112000
16Adam MechuraSenators (OTT)C/LW/RW130330009612670%11189.1000000000000066.67%954000.5101000000
17Hardy Haman AktellSenators (OTT)D220224951076550%223010.460000000009000%014000.1700010000
18Aleksi HeimosalmiSenators (OTT)D22022-22010196340%828412.9200000000049000%007000.1400000000
19Luke ReidSenators (OTT)D220117001033200%11305.940000000001000%002000.1500000000
20Henri NikkanenSenators (OTT)C9000000020000%0131.4900000000000050.00%20000000000000
Team Total or Average405761161922624011050742964824235811.73%171654016.15131831503901231735010444.75%1010172108020.591124991089
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Domenic DiVincentiisSenators (OTT)116410.8282.93594012916999200.8005110000
2Ales StezkaSenators (OTT)114410.8433.625630034217132400.6005112001
3Akira SchmidSenators (OTT)60200.8594.21171001285532000020000
Team Total or Average28101020.8413.391329017547128480102222001


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Country Rookie Weight Height No Trade Available For Trade Acquired By Last Trade Date Force Waivers Waiver Possible Contract Contract Signature Date Force UFA Emergency Recall Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Salary Cap Year 2Salary Cap Year 3Salary Cap Year 4Salary Cap Year 5Salary Cap Year 6Salary Cap Year 7Salary Cap Year 8Salary Cap Year 9Salary Cap Year 10No Trade Year 2No Trade Year 3No Trade Year 4No Trade Year 5No Trade Year 6No Trade Year 7No Trade Year 8No Trade Year 9No Trade Year 10Link
Adam MechuraSenators (OTT)C/LW/RW232003-01-31CZENo194 Lbs6 ft3NoNoAssign ManuallyNoNo12025-12-08FalseFalsePro & Farm1,000,000$741,071$0$0$No---------------------------Link
Akira SchmidSenators (OTT)G252000-05-12SUINo190 Lbs6 ft5NoNoN/ANoNo32025-10-22FalseFalsePro & Farm1,272,000$942,643$0$0$No1,272,000$1,272,000$-------1,272,000$1,272,000$-------NoNo-------Link
Aleksi HeimosalmiSenators (OTT)D222003-05-08FINYes170 Lbs5 ft11NoNoProspectNoNo32025-10-22FalseFalsePro & Farm1,277,000$946,348$0$0$No1,277,000$1,277,000$-------1,277,000$1,277,000$-------NoNo-------Link
Ales StezkaSenators (OTT)G291997-01-06CZENo190 Lbs6 ft4NoNoAssign ManuallyNoNo12025-12-08FalseFalsePro & Farm1,000,000$741,071$0$0$No---------------------------Link
Alexandre TexierSenators (OTT)LW/RW261999-09-13FRANo201 Lbs6 ft1NoNoAssign ManuallyNoNo12025-12-08FalseFalsePro & Farm1,000,000$741,071$0$0$No---------------------------Link
Brad LambertSenators (OTT)C222003-12-19FINYes173 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm1,200,000$889,286$0$0$No---------------------------Link
Brendan BrissonSenators (OTT)C/LW/RW242001-10-22USAYes198 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm925,000$685,491$0$0$No---------------------------Link
Cross HanasSenators (OTT)LW242002-01-05USANo190 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm925,000$685,491$0$0$No---------------------------Link
Daemon HuntSenators (OTT)D232002-05-15CANYes201 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm902,500$668,817$0$0$No---------------------------Link
Domenic DiVincentiisSenators (OTT)G212004-03-04CANYes194 Lbs6 ft2NoNoAssign ManuallyNoNo12026-01-09FalseFalsePro & Farm1,000,000$741,071$0$0$No---------830,556$-----------------Link
Gavin HainSenators (OTT)C252000-04-03USANo194 Lbs5 ft11NoNoN/ANoNo32025-10-17FalseFalsePro & Farm1,096,000$812,214$0$0$No1,096,000$1,096,000$-------1,096,000$1,096,000$-------NoNo-------Link
Hardy Haman AktellSenators (OTT)D271998-07-04SWENo198 Lbs6 ft3NoNoN/ANoNo32025-10-17FalseFalsePro & Farm1,154,000$855,196$0$0$No1,154,000$1,154,000$-------1,154,000$1,154,000$-------NoNo-------Link
Henri NikkanenSenators (OTT)C242001-04-28FINNo200 Lbs6 ft4NoNoN/ANoNo1FalseFalsePro & Farm925,000$685,491$0$0$No---------------------------Link
Hunter HaightSenators (OTT)C212004-04-04CANYes181 Lbs5 ft11NoNoProspectNoNo32025-10-22FalseFalsePro & Farm1,314,000$973,768$0$0$No1,314,000$1,314,000$-------1,314,000$1,314,000$-------NoNo-------Link
Hunter McDonaldSenators (OTT)D232002-05-11USAYes205 Lbs6 ft4NoNoN/ANoNo32025-10-17FalseFalsePro & Farm1,192,000$883,357$0$0$No1,192,000$1,192,000$-------1,192,000$1,192,000$-------NoNo-------Link
Jakub BrabenecSenators (OTT)C222003-09-11CZENo185 Lbs6 ft1NoNoN/ANoNo32025-10-17FalseFalsePro & Farm1,107,000$820,366$0$0$No1,107,000$1,107,000$-------1,107,000$1,107,000$-------NoNo-------Link
Logan BrownSenators (OTT)C271998-03-05USAYes222 Lbs6 ft7NoNoDraftNoNo32025-10-22FalseFalsePro & Farm1,530,000$1,133,839$0$0$No1,530,000$1,530,000$-------1,530,000$1,530,000$-------NoNo-------Link
Lukas SvejkovskySenators (OTT)RW242001-11-28USANo165 Lbs5 ft10NoNoN/ANoNo1FalseFalsePro & Farm925,000$685,491$0$0$No---------------------------Link
Luke ReidSenators (OTT)D242001-09-26CANYes192 Lbs6 ft0NoNoProspectNoNo32025-10-22FalseFalsePro & Farm1,338,000$991,554$0$0$No1,338,000$1,338,000$-------1,338,000$1,338,000$-------NoNo-------Link
Mac HollowellSenators (OTT)D271998-09-26CANNo170 Lbs5 ft9NoNoN/ANoNo1FalseFalsePro & Farm971,000$719,580$0$0$No---------------------------Link
Massimo RizzoSenators (OTT)C242001-06-13CANYes185 Lbs5 ft11NoNoProspectNoNo32025-10-22FalseFalsePro & Farm1,341,000$993,777$0$0$No1,341,000$1,341,000$-------1,341,000$1,341,000$-------NoNo-------Link
Nate SmithSenators (OTT)C271998-10-19USANo177 Lbs6 ft0NoNoN/ANoNo32025-10-22FalseFalsePro & Farm1,409,000$1,044,170$0$0$No1,409,000$1,409,000$-------1,409,000$1,409,000$-------NoNo-------Link
Simon LundmarkSenators (OTT)D252000-10-08SWENo193 Lbs6 ft2NoNoN/ANoNo32025-10-17FalseFalsePro & Farm1,161,000$860,384$0$0$No1,161,000$1,161,000$-------1,161,000$1,161,000$-------NoNo-------Link
Tyson KozakSenators (OTT)C232002-12-29CANYes185 Lbs5 ft11NoNoN/ANoNo1FalseFalsePro & Farm850,000$629,911$0$0$No---------------------------Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2424.25190 Lbs6 ft12.001,117,271$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Tyson KozakLogan BrownBrendan Brisson40122
2Hunter HaightBrad LambertNate Smith30122
3Jakub BrabenecBrendan BrissonMassimo Rizzo20122
4Lukas SvejkovskyCross HanasTyson Kozak10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Hunter McDonaldSimon Lundmark40122
2Daemon HuntMac Hollowell30122
3Daemon HuntAleksi Heimosalmi20122
4Luke ReidDaemon Hunt10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Tyson KozakLogan BrownBrendan Brisson60122
2Hunter HaightBrad LambertNate Smith40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Hunter McDonaldMac Hollowell60122
2Daemon HuntSimon Lundmark40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Brad LambertTyson Kozak60122
2Brendan BrissonJakub Brabenec40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Hunter McDonaldAleksi Heimosalmi60122
2Daemon HuntMac Hollowell40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Tyson Kozak60122Simon LundmarkDaemon Hunt60122
2Cross Hanas40122Hunter McDonaldLuke Reid40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Tyson KozakBrendan Brisson60122
2Brad LambertMassimo Rizzo40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Hunter McDonaldDaemon Hunt60122
2Luke ReidAleksi Heimosalmi40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Tyson KozakLogan BrownBrad LambertDaemon HuntHunter McDonald
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Tyson KozakLogan BrownBrad LambertDaemon HuntHunter McDonald
Extra Forwards
Normal PowerPlayPenalty Kill
Brad Lambert, Hunter Haight, Tyson KozakTyson Kozak, Hunter HaightLukas Svejkovsky
Extra Defensemen
Normal PowerPlayPenalty Kill
Hardy Haman Aktell, Hunter McDonald, Daemon HuntDaemon HuntSimon Lundmark, Daemon Hunt
Penalty Shots
Brendan Brisson, Logan Brown, Tyson Kozak, Brad Lambert, Hunter Haight
Goalie
#1 : Domenic DiVincentiis, #2 : Ales Stezka


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals10001000651100010006510000000000021.0006101600142436331163230252132910132111100.00%4250.00%017639944.11%13930146.18%13730644.77%420198404242505230
2Barracuda2010000159-4000000000002010000159-410.25057120014243636516323025213461914415120.00%7357.14%017639944.11%13930146.18%13730644.77%420198404242505230
3Bruins1000000112-11000000112-10000000000010.5001120014243632716323025213165223000%10100.00%017639944.11%13930146.18%13730644.77%420198404242505230
4Comets21100000844110000006151010000023-120.500811190014243636916323025213372342556350.00%6183.33%017639944.11%13930146.18%13730644.77%420198404242505230
5Condors1010000016-5000000000001010000016-500.000112001424363201632302521332131919300.00%3233.33%017639944.11%13930146.18%13730644.77%420198404242505230
6Eagles1100000010371100000010370000000000021.00010152500142436333163230252132738245120.00%4175.00%017639944.11%13930146.18%13730644.77%420198404242505230
7Heat1010000035-2000000000001010000035-200.00034700142436326163230252132641626100.00%30100.00%017639944.11%13930146.18%13730644.77%420198404242505230
8IceHogs2110000057-2000000000002110000057-220.50058130014243636616323025213521533437228.57%9544.44%017639944.11%13930146.18%13730644.77%420198404242505230
9Monsters21100000761211000007610000000000020.5007111800142436352163230252132488656233.33%50100.00%017639944.11%13930146.18%13730644.77%420198404242505230
10Moose22000000514110000002021100000031241.00057120114243633516323025213117113311100.00%30100.00%017639944.11%13930146.18%13730644.77%420198404242505230
11Phantoms1010000047-31010000047-30000000000000.00046100014243633816323025213331014204125.00%20100.00%017639944.11%13930146.18%13730644.77%420198404242505230
12Rocket302010001114-31000100054120200000610-420.3331119300014243639616323025213732925654125.00%10370.00%117639944.11%13930146.18%13730644.77%420198404242505230
13Wild11000000422000000000001100000042221.000471100142436314163230252132514215200.00%10100.00%017639944.11%13930146.18%13730644.77%420198404242505230
14Wolves21100000660211000006600000000000020.5006915001424363761632302521340113357500.00%4175.00%017639944.11%13930146.18%13730644.77%420198404242505230
Total22810020027677-11153020014734131137000012943-14220.5007611619201142436364816323025213471171240507501326.00%621870.97%117639944.11%13930146.18%13730644.77%420198404242505230
_Since Last GM Reset22810020027677-11153020014734131137000012943-14220.5007611619201142436364816323025213471171240507501326.00%621870.97%117639944.11%13930146.18%13730644.77%420198404242505230
_Vs Conference1658010024856-87320100125196926000012337-14140.43848741220014243634851632302521334513717838338923.68%461567.39%117639944.11%13930146.18%13730644.77%420198404242505230
_Vs Division7470100130181233201000188104150000112102110.78630477701142436317916323025213144496713616531.25%21861.90%017639944.11%13930146.18%13730644.77%420198404242505230

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2222W27611619264847117124050701
All Games
GPWLOTWOTL SOWSOLGFGA
2281020027677
Home Games
GPWLOTWOTL SOWSOLGFGA
115320014734
Visitor Games
GPWLOTWOTL SOWSOLGFGA
113700012943
Last 10 Games
WLOTWOTL SOWSOL
540001
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
501326.00%621870.97%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
163230252131424363
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
17639944.11%13930146.18%13730644.77%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
420198404242505230


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
19Senators3IceHogs2WBox score
216Senators2Barracuda3LXXBox score
333Comets1Senators6WBox score
551Monsters4Senators7WBox score
771Wolves5Senators2LBox score
989Senators3Barracuda6LBox score
10104Phantoms7Senators4LBox score
11121Senators3Rocket6LBox score
12134Wolves1Senators4WBox score
13151Senators2IceHogs5LBox score
14161Senators3Rocket4LBox score
15177Eagles3Senators10WBox score
17197Monsters2Senators0LBox score
18209Senators2Comets3LBox score
19225Admirals5Senators6WXBox score
20243Senators1Condors6LBox score
22259Rocket4Senators5WXBox score
24279Senators4Wild2WBox score
25290Bruins2Senators1LXXBox score
26307Senators3Heat5LBox score
27321Senators3Moose1WBox score
28334Moose0Senators2WBox score
30356Checkers-Senators-
31374Senators-Thunderbirds-
32387Phantoms-Senators-
33400Senators-Roadrunners-
34415Islanders-Senators-
35432Thunderbirds-Senators-
37447Senators-Admirals-
38468Silver Knights-Senators-
39475Senators-Monsters-
40492Senators-Islanders-
41510Reign-Senators-
42526Monsters-Senators-
43536Senators-Penguins-
45561Griffins-Senators-
46575Senators-Canucks-
47592Americans-Senators-
48612Senators-Condors-
49625Senators-Phantoms-
50633Marlies-Senators-
51653Senators-Silver Knights-
52665Eagles-Senators-
53683Admirals-Senators-
54701Senators-Gulls-
56716Gulls-Senators-
57733Senators-Americans-
58745Senators-Crunch-
59756Wild-Senators-
60774Senators-Stars-
61784Senators-Bears-
63797Bears-Senators-
65819Penguins-Senators-
66831Senators-Rocket-
67849Canucks-Senators-
68863Senators-Wolf Pack-
70879Wolf Pack-Senators-
71897Senators-IceHogs-
72910Heat-Senators-
74925Senators-Comets-
75941Rocket-Senators-
77961Senators-Bruins-
78967Senators-Wolves-
79983Crunch-Senators-
811002Senators-IceHogs-
821013Senators-Barracuda-
831025Condors-Senators-
841045Barracuda-Senators-
861064Barracuda-Senators-
871077Senators-Barracuda-
881087Senators-Checkers-
901105Stars-Senators-
911127Condors-Senators-
921134Senators-Marlies-
931150Senators-Griffins-
951167IceHogs-Senators-
961177Senators-Bruins-
Trade Deadline --- Trades can’t be done after this day is simulated!
971196IceHogs-Senators-
981209Senators-Eagles-
1001223Senators-Wolves-
1011234Wolves-Senators-
1031258Comets-Senators-
1051284Comets-Senators-
1061290Senators-Monsters-
1081308Roadrunners-Senators-
1091315Senators-Reign-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3515
Attendance15,6698,447
Attendance PCT71.22%76.79%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
32 2192 - 73.08% 91,448$1,005,927$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Salaries CapCoaches Salaries
940,728$ 2,681,450$ 2,681,450$ 1,000,000$0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
23,942$ 681,816$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
2,926,333$ 83 32,870$ 2,728,210$




Senators Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Senators Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Senators Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Senators Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Senators Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA