Please rotate your device to landscape mode for a better experience.
Login

Admirals
GP: 24 | W: 12 | L: 10 | OTL: 2 | P: 26
GF: 64 | GA: 74 | PP%: 36.96% | PK%: 61.33%
GM : Andrew Welch | Morale : 51 | Team Overall : 57
Next Games #388 vs Condors

Game Center
Rocket
14-3-8, 36pts
0
1 Admirals
12-10-2, 26pts
Team Stats
W1StreakW2
8-0-4Home Record6-6-0
6-3-4Home Record6-4-2
4-2-4Last 10 Games3-6-1
2.24Goals Per Game2.67
1.88Goals Against Per Game3.08
33.33%Power Play Percentage36.96%
73.08%Penalty Kill Percentage61.33%
Admirals
12-10-2, 26pts
3
1 Canucks
11-12-2, 24pts
Team Stats
W2StreakL1
6-6-0Home Record5-6-1
6-4-2Home Record6-6-1
3-6-1Last 10 Games5-5-0
2.67Goals Per Game2.56
3.08Goals Against Per Game3.00
36.96%Power Play Percentage37.04%
61.33%Penalty Kill Percentage60.47%
Condors
15-8-2, 32pts
Day 32
Admirals
12-10-2, 26pts
Team Stats
L1StreakW2
6-6-0Home Record6-6-0
9-2-2Away Record6-4-2
6-4-0Last 10 Games3-6-1
3.52Goals Per Game2.67
2.56Goals Against Per Game2.67
28.57%Power Play Percentage36.96%
70.13%Penalty Kill Percentage61.33%
Admirals
12-10-2, 26pts
Day 34
IceHogs
8-9-8, 24pts
Team Stats
W2StreakW2
6-6-0Home Record4-3-5
6-4-2Away Record4-6-3
3-6-1Last 10 Games4-4-2
2.67Goals Per Game2.08
3.08Goals Against Per Game2.08
36.96%Power Play Percentage34.00%
61.33%Penalty Kill Percentage71.70%
Gulls
14-10-1, 29pts
Day 35
Admirals
12-10-2, 26pts
Team Stats
OTL1StreakW2
7-5-0Home Record6-6-0
7-5-1Away Record6-4-2
4-5-1Last 10 Games3-6-1
2.16Goals Per Game2.67
2.44Goals Against Per Game2.67
22.95%Power Play Percentage36.96%
75.71%Penalty Kill Percentage61.33%
Team Leaders
Goals
Ben Jones
11
Assists
Yegor Sidorov
13
Points
Yegor Sidorov
24
Plus/Minus
Carl Berglund
3
Wins
Dryden McKay
10
Save Percentage
Adam Scheel
0.909

Team Stats
Goals For
64
2.67 GFG
Shots For
451
18.79 Avg
Power Play Percentage
37.0%
17 GF
Offensive Zone Start
33.5%
Goals Against
74
3.08 GAA
Shots Against
479
19.96 Avg
Penalty Kill Percentage
61.3%%
29 GA
Defensive Zone Start
38.9%
Team Info

General ManagerAndrew Welch
CoachAustin Violette
DivisionDivision 4
ConferenceConference 2
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance2,923
Season Tickets1,500


Roster Info

Pro Team21
Farm Team26
Contract Limit47 / 100
Prospects119


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Tye FelhaberX99.0064675668678288625058635860454562556102711,045,000$
2Yegor Sidorov (R)X99.0074679067687174625057626258454562606002131,315,000$
3Ben Jones (R)X100.0085928870715191634451566825474761666002631,386,000$
4Joshua Roy (R)XX98.006542957371587558255171592548486550590222835,000$
5Jordan Dumais (R)X100.0071619364624947595057586154454559645602131,279,000$
6C.J. SuessX100.0075708665705556536846556153454558505603112,000,000$
7Bradley MarekXXX100.0075806464805050536646566153454555615502531,111,000$
8Cam BergXXX100.0055409981712830592549546425454556535502412,000,000$
9Matthew SeminoffX100.0074698463706671475045445943454553575402231,041,000$
10Carl BerglundX100.0081769463764949506350456343454553615402631,109,000$
11Ryan Leonard (R)X100.0081739981744951445038446342454552535402131,268,000$
12Joshua BrownX100.0076874867876166472535396537676849596103211,275,000$
13Artem Duda (R)X100.0076699267705556532549426240454554625702131,289,000$
14Otto Salin (R)X100.0079719981723531532552396337454554405702131,293,000$
15Ben Harpur (R)X100.0078885662885052462537406138454649585603131,401,000$
16Jesse Pulkkinen (R)X100.0085839161843634452536396537454549585502131,263,000$
17Brandon HickeyX100.0080759561754242452532416239454549395402912,000,000$
18Angus Booth (R)X100.0073717864724849482540406038454550595402131,263,000$
Scratches
1Ethan Keppen (R)XXX48.7878758563754340577149606457454559455602431,339,000$
TEAM AVERAGE97.09757184687451555341465062424647555557
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Dryden McKay100.004440506745904549908145454559705902811,000,000$
2Adam Scheel100.005140508354605559636130444455685702631,140,000$
Scratches
TEAM AVERAGE100.0048405075507550547771384545576958
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Austin Violette40404040404040TUR8111,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Yegor SidorovAdmirals (NAS)RW24111324-71010345074113314.86%1354722.8154917320111551233.33%39129010.8813011232
2Joshua RoyAdmirals (NAS)LW/RW24111021-400364470234315.71%1150621.1242612311013342123.08%39245000.8312000420
3Ben JonesAdmirals (NAS)C231192022820395049162622.45%848220.973258230112373144.16%462146010.8302112212
4Tye FelhaberAdmirals (NAS)LW2231013-322105137359288.57%541919.060440120111171042.52%127151000.6200011100
5Jordan DumaisAdmirals (NAS)RW24751201515303442102716.67%943618.171236220000181051.85%27136000.5500003011
6Carl BerglundAdmirals (NAS)C2437103202431233813.04%137515.6300006000051051.82%11036000.5300000003
7Bradley MarekAdmirals (NAS)C/LW/RW242810136105333234118.70%442317.65123123000020042.86%745000.4700002010
8Artem DudaAdmirals (NAS)D24189-212101736258104.00%2356623.59033414101137000%0615000.3200101001
9Ryan LeonardAdmirals (NAS)RW245382121027392031125.00%539216.34000040000230048.72%39119000.4111020021
10Joshua BrownAdmirals (NAS)D22167-15620583226933.85%2554424.76022230000129000%0516000.2600112000
11Ethan KeppenAdmirals (NAS)C/LW/RW18437-1562019262072120.00%530116.751232160000101160.00%14053000.4600112000
12Angus BoothAdmirals (NAS)D24156360212876914.29%1149220.54112325000238000%0112000.2400000000
13Ben HarpurAdmirals (NAS)D24112-2421044421011810.00%1552621.93101324000037000%029000.0800110000
14Otto SalinAdmirals (NAS)D19022175580000%420010.570000100007000%023000.2000001000
15Matthew SeminoffAdmirals (NAS)RW24011020941010%01325.53000030000000100.00%100000.1500000000
16Justin GillPredatorsC/LW/RW21013601222550.00%02412.48000000000000100.00%100000.8000000000
17Jesse PulkkinenAdmirals (NAS)D2401122019379550%1441017.12000021000050000%018000.0500000000
18Chad NychukPredatorsD2011120012100%02914.820000000003000%010000.6700000000
19Gabe PerreaultPredatorsRW2011000121010%0115.9501100000000045.45%1100001.6800000000
20Cameron ButlerPredatorsRW2000000000000%031.760000000000000%00000000000000
21Brandon HickeyAdmirals (NAS)D19000-100242010%01166.150000000003000%00000000000000
22C.J. SuessAdmirals (NAS)C22000000972020%0813.7100000000000047.06%170100000000000
23Cam BergAdmirals (NAS)C/LW/RW22000000638200%11125.090000100000000%24100000000000
Team Total or Average4396294156-331614050555045113025313.75%154713916.26172542582972351141410546.18%1022123115020.4438581591010
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Dryden McKayAdmirals (NAS)24101020.8453.1613484271457206200.6005240021
2Adam ScheelAdmirals (NAS)52000.9091.141050022214001.0003024000
Team Total or Average29121020.8483.01145442734792202082424021


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Country Rookie Weight Height No Trade Available For Trade Acquired By Last Trade Date Force Waivers Waiver Possible Contract Contract Signature Date Force UFA Emergency Recall Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Salary Cap Year 2Salary Cap Year 3Salary Cap Year 4Salary Cap Year 5Salary Cap Year 6Salary Cap Year 7Salary Cap Year 8Salary Cap Year 9Salary Cap Year 10No Trade Year 2No Trade Year 3No Trade Year 4No Trade Year 5No Trade Year 6No Trade Year 7No Trade Year 8No Trade Year 9No Trade Year 10Link
Adam ScheelAdmirals (NAS)G261999-05-01USANo200 Lbs6 ft4NoNoN/ANoNo32025-10-17FalseFalsePro & Farm1,140,000$824,464$0$0$No1,140,000$1,140,000$-------1,140,000$1,140,000$-------NoNo-------Link
Angus BoothAdmirals (NAS)D212004-04-27QCYes190 Lbs6 ft1NoNoProspectNoNo32025-10-22FalseFalsePro & Farm1,263,000$913,420$0$0$No1,263,000$1,263,000$-------1,263,000$1,263,000$-------NoNo-------Link
Artem DudaAdmirals (NAS)D212004-04-08RUSYes187 Lbs6 ft1NoNoProspectNoNo32025-10-22FalseFalsePro & Farm1,289,000$932,223$0$0$No1,289,000$1,289,000$-------1,289,000$1,289,000$-------NoNo-------Link
Ben HarpurAdmirals (NAS)D311995-01-12CANYes231 Lbs6 ft6NoNoDraftNoNo32025-10-22FalseFalsePro & Farm1,401,000$1,013,223$0$0$No1,401,000$1,401,000$-------1,401,000$1,401,000$-------NoNo-------Link
Ben JonesAdmirals (NAS)C261999-02-26CANYes187 Lbs6 ft0NoNoAssign ManuallyNoNo32025-10-22FalseFalsePro & Farm1,386,000$1,002,375$0$0$No1,386,000$1,386,000$-------1,386,000$1,386,000$-------NoNo-------Link
Bradley MarekAdmirals (NAS)C/LW/RW252000-11-13USANo212 Lbs6 ft4NoNoAssign ManuallyNoNo32025-10-17FalseFalsePro & Farm1,111,000$803,491$0$0$No1,111,000$1,111,000$-------1,111,000$1,111,000$-------NoNo-------Link
Brandon HickeyAdmirals (NAS)D291996-04-13ABNo200 Lbs6 ft2NoNoAssign ManuallyNoNo12025-12-08FalseFalsePro & Farm2,000,000$1,446,429$0$0$No---------------------------Link / NHL Link
C.J. SuessAdmirals (NAS)C311994-03-17USANo194 Lbs6 ft0NoNoAssign ManuallyNoNo12025-12-08FalseFalsePro & Farm2,000,000$1,446,429$0$0$No---------------------------Link / NHL Link
Cam BergAdmirals (NAS)C/LW/RW242002-01-29USANo190 Lbs6 ft0NoNoAssign ManuallyNoNo12025-12-08FalseFalsePro & Farm2,000,000$1,446,429$0$0$No---------------------------Link
Carl BerglundAdmirals (NAS)C262000-01-16SWENo207 Lbs6 ft2NoNoAssign ManuallyNoNo32025-10-17FalseFalsePro & Farm1,109,000$802,045$0$0$No1,109,000$1,109,000$-------1,109,000$1,109,000$-------NoNo-------Link
Dryden McKayAdmirals (NAS)G281997-11-25USANo183 Lbs6 ft0NoNoAssign ManuallyNoNo12025-12-08FalseFalsePro & Farm1,000,000$723,214$0$0$No---------------------------Link
Ethan Keppen (Out of Payroll)Admirals (NAS)C/LW/RW242001-03-20ONYes203 Lbs6 ft2NoNoDraftNoNo32025-10-22FalseFalsePro & Farm1,339,000$968,384$0$0$Yes1,339,000$1,339,000$-------1,339,000$1,339,000$-------NoNo-------Link
Jesse PulkkinenAdmirals (NAS)D212004-12-27FINYes215 Lbs6 ft6NoNoDraftNoNo32025-10-22FalseFalsePro & Farm1,263,000$913,420$0$0$No1,263,000$1,263,000$-------1,263,000$1,263,000$-------NoNo-------Link
Jordan DumaisAdmirals (NAS)RW212004-04-15CANYes174 Lbs5 ft9NoNoProspectNoNo32025-10-22FalseFalsePro & Farm1,279,000$924,991$0$0$No1,279,000$1,279,000$-------1,279,000$1,279,000$-------NoNo-------Link
Joshua BrownAdmirals (NAS)D321994-01-21ONTNo220 Lbs6 ft5NoNoN/ANoNo1FalseFalsePro & Farm1,275,000$922,098$0$0$No---------------------------Link
Joshua RoyAdmirals (NAS)LW/RW222003-08-06CANYes192 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm835,000$603,884$0$0$No835,000$--------835,000$--------No--------Link
Matthew SeminoffAdmirals (NAS)RW222003-12-27USANo190 Lbs5 ft11NoNoN/ANoNo32025-05-01FalseFalsePro & Farm1,041,000$752,866$0$0$No1,041,000$1,041,000$-------1,041,000$1,041,000$-------NoNo-------Link
Otto SalinAdmirals (NAS)D212004-03-07FINYes195 Lbs6 ft0NoNoProspectNoNo32025-10-22FalseFalsePro & Farm1,293,000$935,116$0$0$No1,293,000$1,293,000$-------1,293,000$1,293,000$-------NoNo-------Link
Ryan LeonardAdmirals (NAS)RW212005-01-21USAYes192 Lbs6 ft0NoNoProspectNoNo32025-10-22FalseFalsePro & Farm1,268,000$917,036$0$0$No1,268,000$1,268,000$-------1,268,000$1,268,000$-------NoNo-------Link
Tye FelhaberAdmirals (NAS)LW271998-08-05CANNo185 Lbs5 ft11NoNoN/ANoNo1FalseFalsePro & Farm1,045,000$755,759$0$0$No---------------------------Link
Yegor SidorovAdmirals (NAS)RW212004-06-18BLRYes184 Lbs6 ft0NoNoDraftNoNo32025-10-22FalseFalsePro & Farm1,315,000$951,027$0$0$No1,315,000$1,315,000$-------1,315,000$1,315,000$-------NoNo-------Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2124.76197 Lbs6 ft12.381,316,762$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Joshua RoyTye FelhaberYegor Sidorov40122
2Bradley MarekBen JonesJordan Dumais30122
3Tye FelhaberCarl BerglundRyan Leonard20122
4Yegor SidorovJordan DumaisJoshua Roy10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Artem DudaJoshua Brown40122
2Ben HarpurAngus Booth30122
3Jesse PulkkinenJoshua Brown20122
4Otto SalinBen Harpur10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Joshua RoyTye FelhaberYegor Sidorov60122
2Bradley MarekRyan LeonardJordan Dumais40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Jesse PulkkinenJoshua Brown60122
2Ben HarpurAngus Booth40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Tye FelhaberYegor Sidorov60122
2Joshua RoyJordan Dumais40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Joshua BrownJesse Pulkkinen60122
2Ben HarpurAngus Booth40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Joshua Roy60122Joshua BrownJesse Pulkkinen60122
2Yegor Sidorov40122Ben HarpurAngus Booth40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Tye FelhaberYegor Sidorov60122
2Joshua RoyJordan Dumais40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Jesse PulkkinenJoshua Brown60122
2Ben HarpurAngus Booth40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Joshua RoyTye FelhaberYegor SidorovArtem DudaJoshua Brown
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Joshua RoyTye FelhaberYegor SidorovArtem DudaJoshua Brown
Extra Forwards
Normal PowerPlayPenalty Kill
Joshua Roy, Yegor Sidorov, Ryan LeonardYegor Sidorov, Joshua RoyRyan Leonard
Extra Defensemen
Normal PowerPlayPenalty Kill
Jesse Pulkkinen, Angus Booth, Ben HarpurJesse PulkkinenJoshua Brown, Ben Harpur
Penalty Shots
Ryan Leonard, Yegor Sidorov, Joshua Roy, Jordan Dumais, Tye Felhaber
Goalie
#1 : Dryden McKay, #2 : Adam Scheel


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Americans2020000025-3000000000002020000025-300.000246001926146441361491601445122742200.00%6183.33%015033844.38%17939245.66%14327951.25%409156447274599283
2Bears1000000123-1000000000001000000123-110.50022400192614626136149160142484152150.00%20100.00%015033844.38%17939245.66%14327951.25%409156447274599283
3Canucks11000000312000000000001100000031221.0003470019261461513614916014253231722100.00%4175.00%015033844.38%17939245.66%14327951.25%409156447274599283
4Checkers4020101079-23020100047-31000001032140.50071017001926146511361491601456209488200.00%12650.00%015033844.38%17939245.66%14327951.25%409156447274599283
5Eagles421000101816210000010761321000001110160.75018294700192614677136149160148724587910550.00%191047.37%215033844.38%17939245.66%14327951.25%409156447274599283
6Heat11000000651110000006510000000000021.0006915001926146311361491601428724173266.67%7357.14%015033844.38%17939245.66%14327951.25%409156447274599283
7Moose412010001012-23020100058-31100000054140.5001013230019261469813614916014712444849111.11%12375.00%015033844.38%17939245.66%14327951.25%409156447274599283
8Penguins2110000058-31010000005-51100000053220.50059140019261462813614916014361423525120.00%9366.67%015033844.38%17939245.66%14327951.25%409156447274599283
9Roadrunners1010000026-41010000026-40000000000000.000235001926146141361491601439155283133.33%000%015033844.38%17939245.66%14327951.25%409156447274599283
10Rocket10001000101100010001010000000000021.000112011926146121361491601491220100.00%10100.00%015033844.38%17939245.66%14327951.25%409156447274599283
11Senators1000010056-1000000000001000010056-110.5005611001926146291361491601431167254250.00%110.00%015033844.38%17939245.66%14327951.25%409156447274599283
12Stars21100000330110000003031010000003-320.500347011926146261361491601428109383266.67%2150.00%015033844.38%17939245.66%14327951.25%409156447274599283
Total24710031216474-101226030102837-91254001113637-1260.542649415802192614645113614916014479154320505461736.96%752961.33%215033844.38%17939245.66%14327951.25%409156447274599283
_Since Last GM Reset24710031216474-101226030102837-91254001113637-1260.542649415802192614645113614916014479154320505461736.96%752961.33%215033844.38%17939245.66%14327951.25%409156447274599283
_Vs Conference21610020215567-121126020102737-101044000112830-2210.500558313801192614639513614916014414134288443391333.33%692760.87%215033844.38%17939245.66%14327951.25%409156447274599283
_Vs Division36902020711-41250201005-524400010761203.333711180019261465413614916014602227677228.57%11372.73%015033844.38%17939245.66%14327951.25%409156447274599283

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2426W2649415845147915432050502
All Games
GPWLOTWOTL SOWSOLGFGA
2471031216474
Home Games
GPWLOTWOTL SOWSOLGFGA
122630102837
Visitor Games
GPWLOTWOTL SOWSOLGFGA
125401113637
Last 10 Games
WLOTWOTL SOWSOL
360100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
461736.96%752961.33%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
136149160141926146
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
15033844.38%17939245.66%14327951.25%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
409156447274599283


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
17Heat5Admirals6WBox score
223Admirals6Eagles5WBox score
442Stars0Admirals3WBox score
661Admirals5Penguins3WBox score
774Moose1Admirals2WXBox score
994Checkers2Admirals3WXBox score
10113Admirals2Bears3LXXBox score
11128Eagles6Admirals7WXXBox score
12138Admirals0Stars3LBox score
13147Admirals1Americans3LBox score
15166Checkers3Admirals1LBox score
16188Moose3Admirals1LBox score
17199Admirals5Moose4WBox score
18214Admirals3Eagles1WBox score
19225Admirals5Senators6LXBox score
20242Penguins5Admirals0LBox score
21256Admirals1Americans2LBox score
23274Moose4Admirals2LBox score
25294Checkers2Admirals0LBox score
27311Admirals3Checkers2WXXBox score
28323Roadrunners6Admirals2LBox score
29341Admirals2Eagles4LBox score
30353Rocket0Admirals1WXBox score
31368Admirals3Canucks1WBox score
32388Condors-Admirals-
34405Admirals-IceHogs-
35420Gulls-Admirals-
36437Admirals-Barracuda-
37447Senators-Admirals-
38471Wolves-Admirals-
40483Admirals-Americans-
41503Canucks-Admirals-
42513Admirals-Stars-
43533Marlies-Admirals-
44550Admirals-Monsters-
45563Penguins-Admirals-
46580Admirals-Checkers-
47594Admirals-Griffins-
48606Heat-Admirals-
49624IceHogs-Admirals-
50639Admirals-Comets-
51648Admirals-Heat-
52664Stars-Admirals-
53683Admirals-Senators-
54696Comets-Admirals-
56715Admirals-Moose-
57726Heat-Admirals-
58748Thunderbirds-Admirals-
59761Admirals-Heat-
61775Admirals-Condors-
62786Crunch-Admirals-
64807Admirals-Crunch-
65817Phantoms-Admirals-
66838Barracuda-Admirals-
67850Admirals-Phantoms-
68861Admirals-Bruins-
70880Eagles-Admirals-
71891Admirals-Thunderbirds-
73911Wolf Pack-Admirals-
74928Admirals-Reign-
75939Admirals-Wolves-
76952Wild-Admirals-
78971Islanders-Admirals-
80986Admirals-Gulls-
811001Wolf Pack-Admirals-
821018Admirals-Wolf Pack-
831030Admirals-Silver Knights-
841044Griffins-Admirals-
851052Admirals-Rocket-
861071Admirals-Roadrunners-
881083Monsters-Admirals-
891103Bruins-Admirals-
901112Admirals-Islanders-
911132Roadrunners-Admirals-
941159Bears-Admirals-
961186Stars-Admirals-
Trade Deadline --- Trades can’t be done after this day is simulated!
981211Americans-Admirals-
1001226Admirals-Marlies-
1011243Silver Knights-Admirals-
1021248Admirals-Penguins-
1051276Reign-Admirals-
1061285Admirals-Wild-
1071294Admirals-Rocket-
1081306Admirals-Penguins-
1101318Americans-Admirals-
1111333Admirals-Wild-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price304
Attendance23,07512,000
Attendance PCT96.15%100.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
31 2923 - 97.43% 91,914$1,102,973$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Salaries CapCoaches Salaries
1,022,226$ 2,631,300$ 2,631,300$ 1,000,000$0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
23,494$ 745,436$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
2,849,347$ 81 32,422$ 2,626,182$




Admirals Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Admirals Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Admirals Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Admirals Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Admirals Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA