Please rotate your device to landscape mode for a better experience.
Login

Heat
GP: 21 | W: 10 | L: 6 | OTL: 5 | P: 25
GF: 58 | GA: 53 | PP%: 26.42% | PK%: 80.00%
GM : Ray Whiddon | Morale : 47 | Team Overall : 59
Next Games #329 vs Phantoms

Game Center
Heat
10-6-5, 25pts
3
1 Phantoms
8-11-0, 16pts
Team Stats
W2StreakL1
6-2-2Home Record4-6-0
4-4-3Home Record4-5-0
6-0-4Last 10 Games4-6-0
2.76Goals Per Game3.32
2.52Goals Against Per Game3.47
26.42%Power Play Percentage28.30%
80.00%Penalty Kill Percentage69.49%
Senators
8-10-2, 18pts
3
5 Heat
10-6-5, 25pts
Team Stats
L1StreakW2
6-3-1Home Record6-2-2
2-7-1Home Record4-4-3
4-5-1Last 10 Games6-0-4
3.55Goals Per Game2.76
3.80Goals Against Per Game2.52
24.49%Power Play Percentage26.42%
69.49%Penalty Kill Percentage80.00%
Phantoms
8-11-0, 16pts
Day 28
Heat
10-6-5, 25pts
Team Stats
L1StreakW2
4-6-0Home Record6-2-2
4-5-0Away Record4-4-3
4-6-0Last 10 Games6-0-4
3.32Goals Per Game2.76
3.47Goals Against Per Game2.76
28.30%Power Play Percentage26.42%
69.49%Penalty Kill Percentage80.00%
Heat
10-6-5, 25pts
Day 29
Bears
13-5-1, 27pts
Team Stats
W2StreakW4
6-2-2Home Record7-3-0
4-4-3Away Record6-2-1
6-0-4Last 10 Games8-2-0
2.76Goals Per Game3.63
2.52Goals Against Per Game3.63
26.42%Power Play Percentage34.33%
80.00%Penalty Kill Percentage76.00%
Heat
10-6-5, 25pts
Day 30
Monsters
7-6-7, 21pts
Team Stats
W2StreakOTL3
6-2-2Home Record2-3-5
4-4-3Away Record5-3-2
6-0-4Last 10 Games3-3-4
2.76Goals Per Game2.05
2.52Goals Against Per Game2.05
26.42%Power Play Percentage33.33%
80.00%Penalty Kill Percentage71.74%
Team Leaders
Goals
Oskar Back
13
Assists
Oskar Back
14
Points
Oskar Back
27
Kyle BurroughsPlus/Minus
Kyle Burroughs
10
Wins
Erik Portillo
10
Save Percentage
Felix Sandstrom
0.872

Team Stats
Goals For
58
2.76 GFG
Shots For
459
21.86 Avg
Power Play Percentage
26.4%
14 GF
Offensive Zone Start
39.8%
Goals Against
53
2.52 GAA
Shots Against
361
17.19 Avg
Penalty Kill Percentage
80.0%%
10 GA
Defensive Zone Start
31.8%
Team Info

General ManagerRay Whiddon
CoachAdam Gill
DivisionDivision 4
ConferenceConference 2
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance1,505
Season Tickets1,500


Roster Info

Pro Team22
Farm Team18
Contract Limit40 / 100
Prospects101


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Connor BrownX99.0059419579676799623768717725757771586803222,800,000$
2Oskar Back (R)X100.0063429774775990655866607625545465606502531,485,000$
3Ryan Suzuki (R)X100.0077728769738186658069586654454564576402421,243,000$
4Mike HardmanX96.008076897476737663505864675948486469630261990,000$
5Dylan Roobroeck (R)X100.0081818267828288587350626559454563556202131,390,000$
6Benoit-Olivier GroulxX100.0074737566735249648062626359454562545902521,340,000$
7Bokondji ImamaX100.009399507983436057255158612547475856590291914,000$
8Dylan Peterson (R)X100.0071775865776669557047606058454559535802431,353,000$
9Curtis DouglasX100.0081945065945353556950566553444459535702521,066,000$
10Aku RatyX100.0075718466725454545056486245454555605602431,108,000$
11Luca Pinelli (R)X100.0061596480595352577166445642444455535602031,284,000$
12Nathan Aspinall (R)XXX100.0084779981783432445538446342454551545301931,269,000$
13Anthony Romano (R)XXX100.0076679663674545486146456044454553535202531,320,000$
14Michael KesselringX100.0076866979847299662562526925616163536902621,144,000$
15Shakir Mukhamadullin (R)X100.0071439172787568672559518025484863546602411,294,167$
16Kyle BurroughsX100.0078956767724755602549476825636356516103012,555,000$
17Shai Buium (R)X98.1383799366805455512548406538454553545902231,287,000$
18William VilleneuveX100.007269786870525156255642613945455354570231817,778$
19Aaron NessX100.0071668163666469472537415839444450425503511,000,000$
Scratches
1Cole ClaytonX100.0076738264735254482541396037454550315502531,336,000$
TEAM AVERAGE99.66757279707559655748545265414949585460
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Erik Portillo (R)100.00484860904747535650503045454964540251875,000$
2Felix Sandstrom100.004944558149485355505030444450515302921,585,000$
Scratches
TEAM AVERAGE100.0049465886484853565050304545505854
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Adam Gill40404040404040TUR8111,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Oskar BackHeat (CAL)C21131427-200335150162526.00%644321.1454914442022442154.67%42885001.2204000303
2Connor BrownHeat (CAL)RW2181220055252068183211.76%541419.73123527000000216.67%18189000.9704001212
3Mike HardmanHeat (CAL)LW2191019-12420323448132618.75%948423.083477440001403246.15%26126000.7800301212
4Shakir MukhamadullinHeat (CAL)D2121214-32017282610177.69%952324.93156650011147100%0611000.5300000020
5Ryan SuzukiHeat (CAL)C21491354041305016338.00%641019.530224340000171056.46%147166000.6312000022
6Bokondji ImamaHeat (CAL)LW21671372810382744112513.64%439218.691124351011261016.67%12134000.6600011211
7Aku RatyHeat (CAL)RW215497752232237621.74%336717.51011234000001016.67%653000.4900100201
8Dylan RoobroeckHeat (CAL)C21369110028243310209.09%037617.910002220222210048.42%9566000.4800000010
9Michael KesselringHeat (CAL)D19268035152417337176.06%1436018.97123627011129000%024000.4400111110
10Benoit-Olivier GroulxHeat (CAL)C21235-1402016152613.33%126212.5000007000081061.76%6866000.3800000010
11Kyle BurroughsHeat (CAL)D21044103715273012370%944421.15000133000023000%0711000.1800021000
12William VilleneuveHeat (CAL)D212240602819138715.38%1239418.80213320000011000%035000.2000000000
13Shai BuiumHeat (CAL)D21044619152032113100%1043720.83000034000036000%015000.1800300000
14Nathan AspinallHeat (CAL)C/LW/RW21202-4221015181581813.33%329013.8500000000000050.00%426000.1400002000
15Aaron NessHeat (CAL)D150111206158150%423515.730000300005000%005000.0800000000
16Cole ClaytonHeat (CAL)D8011-400970000%113617.030000100009000%000000.1500000000
17Dylan PetersonHeat (CAL)C21000-100620000%0492.3700000000000066.67%31000000000000
18Anthony RomanoHeat (CAL)C/LW/RW21000-100141210580%024911.8600003000060033.33%30300000000000
19Curtis DouglasHeat (CAL)C21000000100000%050.250000000000000%00000000000000
20Luca PinelliHeat (CAL)C21000000000000%010.050000000000000%00000000000000
Team Total or Average3995895153202059540641445913826212.64%96628015.7414223654426347832910552.84%81010695000.49110847121011
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Erik PortilloHeat (CAL)2110440.8632.2411500343314209200.4449201001
2Felix SandstromHeat (CAL)40210.8722.7912900647300002120000
Team Total or Average2510650.8642.301280034936123920112121001


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Country Rookie Weight Height No Trade Available For Trade Acquired By Last Trade Date Force Waivers Waiver Possible Contract Contract Signature Date Force UFA Emergency Recall Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Salary Cap Year 2Salary Cap Year 3Salary Cap Year 4Salary Cap Year 5Salary Cap Year 6Salary Cap Year 7Salary Cap Year 8Salary Cap Year 9Salary Cap Year 10No Trade Year 2No Trade Year 3No Trade Year 4No Trade Year 5No Trade Year 6No Trade Year 7No Trade Year 8No Trade Year 9No Trade Year 10Link
Aaron NessHeat (CAL)D351990-05-18USANo188 Lbs5 ft10NoNoAssign ManuallyNoNo12025-12-08FalseFalsePro & Farm1,000,000$767,857$0$0$No---------------------------Link / NHL Link
Aku RatyHeat (CAL)RW242001-07-05FINNo190 Lbs6 ft1NoNoN/ANoNo32025-10-17FalseFalsePro & Farm1,108,000$850,786$0$0$No1,108,000$1,108,000$-------1,108,000$1,108,000$-------NoNo-------Link
Anthony RomanoHeat (CAL)C/LW/RW252000-10-07ONYes185 Lbs5 ft11NoNoProspectNoNo32025-10-22FalseFalsePro & Farm1,320,000$1,013,571$0$0$No1,320,000$1,320,000$-------1,320,000$1,320,000$-------NoNo-------Link
Benoit-Olivier GroulxHeat (CAL)C252000-02-06FRANo198 Lbs6 ft2NoNoN/ANoNo2FalseFalsePro & Farm1,340,000$1,028,929$0$0$No1,340,000$--------1,340,000$--------No--------Link
Bokondji ImamaHeat (CAL)LW291996-08-03CANNo221 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm914,000$701,821$0$0$No---------------------------Link / NHL Link
Cole ClaytonHeat (CAL)D252000-02-29ABNo198 Lbs6 ft2NoNoTrade2025-01-31NoNo32025-10-22FalseFalsePro & Farm1,336,000$1,025,857$0$0$No1,336,000$1,336,000$-------1,336,000$1,336,000$-------NoNo-------Link
Connor BrownHeat (CAL)RW321994-01-14CANNo184 Lbs6 ft0NoNoTrade2025-09-03NoNo22024-09-16FalseFalsePro & Farm2,800,000$2,150,000$0$0$No2,800,000$--------2,800,000$--------No--------Link / NHL Link
Curtis DouglasHeat (CAL)C252000-03-06ONTNo242 Lbs6 ft9NoNoN/ANoNo2FalseFalsePro & Farm1,066,000$818,536$0$0$No1,066,000$--------1,066,000$--------No--------Link
Dylan PetersonHeat (CAL)C242002-01-08USAYes203 Lbs6 ft4NoNoProspectNoNo32025-10-22FalseFalsePro & Farm1,353,000$1,038,911$0$0$No1,353,000$1,353,000$-------1,353,000$1,353,000$-------NoNo-------Link
Dylan RoobroeckHeat (CAL)C212004-07-27CANYes205 Lbs6 ft7NoNoDraftNoNo32025-10-22FalseFalsePro & Farm1,390,000$1,067,321$0$0$No1,390,000$1,390,000$-------1,390,000$1,390,000$-------NoNo-------Link
Erik PortilloHeat (CAL)G252000-09-03SWEYes218 Lbs6 ft6NoNoN/ANoNo1FalseFalsePro & Farm875,000$671,875$0$0$No---------------------------Link
Felix SandstromHeat (CAL)G291997-01-12SWENo214 Lbs6 ft2NoNoN/ANoNo2FalseFalsePro & Farm1,585,000$1,217,054$0$0$No1,585,000$--------1,585,000$--------No--------Link
Kyle BurroughsHeat (CAL)D301995-07-12CANNo193 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm2,555,000$1,961,875$0$0$No---------------------------Link / NHL Link
Luca PinelliHeat (CAL)C202005-04-05CANYes168 Lbs5 ft9NoNoDraftNoNo32025-10-22FalseFalsePro & Farm1,284,000$985,929$0$0$No1,284,000$1,284,000$-------1,284,000$1,284,000$-------NoNo-------Link
Michael KesselringHeat (CAL)D262000-01-13USANo215 Lbs6 ft5NoNoN/ANoNo2FalseFalsePro & Farm1,144,000$878,429$0$0$No1,144,000$--------1,144,000$--------No--------Link
Mike HardmanHeat (CAL)LW261999-02-05USANo205 Lbs6 ft2NoNoN/ANoNo1FalseFalsePro & Farm990,000$760,179$0$0$No---------------------------Link
Nathan AspinallHeat (CAL)C/LW/RW192006-03-30ONYes194 Lbs6 ft7NoNoDraftNoNo32025-10-22FalseFalsePro & Farm1,269,000$974,411$0$0$No1,269,000$1,269,000$-------1,269,000$1,269,000$-------NoNo-------Link
Oskar BackHeat (CAL)C252000-03-12SWEYes202 Lbs6 ft4NoNoN/ANoNo32025-10-17FalseFalsePro & Farm1,485,000$1,140,268$0$0$No1,485,000$1,485,000$-------1,485,000$1,485,000$-------NoNo-------Link
Ryan SuzukiHeat (CAL)C242001-05-28CANYes196 Lbs6 ft1NoNoN/ANoNo2FalseFalsePro & Farm1,243,000$954,446$0$0$No1,243,000$--------1,243,000$--------No--------Link
Shai BuiumHeat (CAL)D222003-03-26USAYes210 Lbs6 ft3NoNoProspectNoNo32025-10-22FalseFalsePro & Farm1,287,000$988,232$0$0$No1,287,000$1,287,000$-------1,287,000$1,287,000$-------NoNo-------Link
Shakir MukhamadullinHeat (CAL)D242002-01-10RUSYes200 Lbs6 ft4NoNoN/ANoNo1FalseFalsePro & Farm1,294,167$993,735$0$0$No---------------------------Link
William VilleneuveHeat (CAL)D232002-03-20QUENo183 Lbs6 ft2NoNoN/ANoNo1FalseFalsePro & Farm817,778$627,937$0$0$No---------------------------Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2225.36201 Lbs6 ft32.091,338,907$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Mike HardmanOskar BackConnor Brown40122
2Bokondji ImamaRyan SuzukiAku Raty30122
3Nathan AspinallDylan RoobroeckAnthony Romano20122
4Mike HardmanBenoit-Olivier GroulxConnor Brown10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Michael KesselringShakir Mukhamadullin40122
2Kyle BurroughsShai Buium30122
3William VilleneuveAaron Ness20122
4Michael KesselringShakir Mukhamadullin10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Mike HardmanOskar BackConnor Brown60122
2Bokondji ImamaRyan SuzukiAku Raty40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Michael KesselringShakir Mukhamadullin60122
2Kyle BurroughsShai Buium40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Oskar BackMike Hardman60122
2Ryan SuzukiBokondji Imama40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Michael KesselringShakir Mukhamadullin60122
2Kyle BurroughsShai Buium40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Oskar Back60122Michael KesselringShakir Mukhamadullin60122
2Ryan Suzuki40122Kyle BurroughsShai Buium40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Oskar BackMike Hardman60122
2Ryan SuzukiBokondji Imama40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Michael KesselringShakir Mukhamadullin60122
2Kyle BurroughsShai Buium40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Mike HardmanOskar BackConnor BrownMichael KesselringShakir Mukhamadullin
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Mike HardmanOskar BackConnor BrownMichael KesselringShakir Mukhamadullin
Extra Forwards
Normal PowerPlayPenalty Kill
Dylan Roobroeck, Benoit-Olivier Groulx, Bokondji ImamaDylan Roobroeck, Benoit-Olivier GroulxDylan Roobroeck
Extra Defensemen
Normal PowerPlayPenalty Kill
Shai Buium, William Villeneuve, Aaron NessShai BuiumShai Buium, William Villeneuve
Penalty Shots
Connor Brown, Oskar Back, Ryan Suzuki, Mike Hardman, Dylan Roobroeck
Goalie
#1 : Erik Portillo, #2 : Felix Sandstrom


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals1010000056-1000000000001010000056-100.0005914001119263281101431971931816247342.86%3233.33%017331554.92%13125251.98%12422555.11%389155370232520261
2Americans2110000056-1110000003211010000024-220.50058130011192634211014319719481347435240.00%6183.33%017331554.92%13125251.98%12422555.11%389155370232520261
3Checkers20001001880000000000002000100188030.75081321001119263381101431971923318423133.33%4175.00%117331554.92%13125251.98%12422555.11%389155370232520261
4Comets1000000134-11000000134-10000000000010.50035800111926331110143197191914184250.00%2150.00%017331554.92%13125251.98%12422555.11%389155370232520261
5Condors1010000013-21010000013-20000000000000.000123001119263291101431971940511202150.00%3166.67%017331554.92%13125251.98%12422555.11%389155370232520261
6Eagles2010000157-21010000001-11000000156-110.250571200111926349110143197192961631600.00%3166.67%017331554.92%13125251.98%12422555.11%389155370232520261
7Marlies1000000112-1000000000001000000112-110.5001120011192632511014319719177714100.00%10100.00%017331554.92%13125251.98%12422555.11%389155370232520261
8Moose31101000541110000002022010100034-140.667571201111926341110143197193181666400.00%8187.50%017331554.92%13125251.98%12422555.11%389155370232520261
9Penguins32100000770220000007431010000003-340.667712190111192636111014319719331328614250.00%9277.78%017331554.92%13125251.98%12422555.11%389155370232520261
10Phantoms11000000312000000000001100000031221.0003580011192632011014319719148820300.00%40100.00%217331554.92%13125251.98%12422555.11%389155370232520261
11Roadrunners11000000615110000006150000000000021.00061016001119263231101431971930811188337.50%30100.00%017331554.92%13125251.98%12422555.11%389155370232520261
12Senators11000000532110000005320000000000021.0005914001119263261101431971926141214300.00%10100.00%017331554.92%13125251.98%12422555.11%389155370232520261
13Stars210001004131000010001-11100000040430.750471101111926346110143197192021135300.00%30100.00%017331554.92%13125251.98%12422555.11%389155370232520261
Total21860210458535106200101271981124020033134-3250.59558951530311192634591101431971936196205406531426.42%501080.00%317331554.92%13125251.98%12422555.11%389155370232520261
_Since Last GM Reset21860210458535106200101271981124020033134-3250.59558951530311192634591101431971936196205406531426.42%501080.00%317331554.92%13125251.98%12422555.11%389155370232520261
_Vs Conference187502103494367510010018991124020033134-3220.61149791280311192633731101431971927676178354441125.00%44881.82%317331554.92%13125251.98%12422555.11%389155370232520261
_Vs Division55502102131213410010010822140200234-1171.700132235011119263112110143197196622409911436.36%15380.00%217331554.92%13125251.98%12422555.11%389155370232520261

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2125W258951534593619620540603
All Games
GPWLOTWOTL SOWSOLGFGA
218621045853
Home Games
GPWLOTWOTL SOWSOLGFGA
106201012719
Visitor Games
GPWLOTWOTL SOWSOLGFGA
112420033134
Last 10 Games
WLOTWOTL SOWSOL
600103
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
531426.42%501080.00%3
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
110143197191119263
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
17331554.92%13125251.98%12422555.11%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
389155370232520261


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
17Heat5Admirals6LBox score
217Heat5Checkers4WXBox score
331Penguins4Heat5WBox score
550Eagles1Heat0LBox score
666Heat2Moose1WXBox score
881Heat2Americans4LBox score
990Moose0Heat2WBox score
10114Condors3Heat1LBox score
11129Heat1Moose3LBox score
12143Comets4Heat3LXXBox score
13150Heat0Penguins3LBox score
15176Stars1Heat0LXBox score
16191Heat3Checkers4LXXBox score
17202Americans2Heat3WBox score
18220Roadrunners1Heat6WBox score
20241Heat4Stars0WBox score
21255Penguins0Heat2WBox score
23268Heat1Marlies2LXXBox score
24281Heat5Eagles6LXXBox score
25292Heat3Phantoms1WBox score
26307Senators3Heat5WBox score
28329Phantoms-Heat-
29342Heat-Bears-
30352Heat-Monsters-
31370Crunch-Heat-
32391Islanders-Heat-
34411Condors-Heat-
35425Heat-Reign-
36440Heat-Wild-
37453Heat-Stars-
38463Thunderbirds-Heat-
40486Barracuda-Heat-
41497Heat-Penguins-
42515Griffins-Heat-
43528Heat-Americans-
44547Heat-Americans-
45559Silver Knights-Heat-
46574Heat-Silver Knights-
47589Canucks-Heat-
48606Heat-Admirals-
49619Penguins-Heat-
50638Heat-Penguins-
51648Admirals-Heat-
52662Heat-Crunch-
53676Heat-Canucks-
54688Reign-Heat-
55709Eagles-Heat-
57726Heat-Admirals-
58738IceHogs-Heat-
59761Admirals-Heat-
61777Heat-Eagles-
62790Heat-Checkers-
63803Monsters-Heat-
65822Heat-IceHogs-
66832Wolf Pack-Heat-
67848Heat-Thunderbirds-
68860Heat-Condors-
69869Wild-Heat-
71893Marlies-Heat-
72910Heat-Senators-
74924Wolves-Heat-
75937Heat-Wolf Pack-
76954Moose-Heat-
78974Heat-Griffins-
79985Moose-Heat-
811005Rocket-Heat-
821015Heat-Gulls-
831029Heat-Moose-
851047Bears-Heat-
861070Stars-Heat-
871079Heat-Rocket-
881095Heat-Roadrunners-
901110Bruins-Heat-
911122Heat-Bruins-
921142Checkers-Heat-
941165Gulls-Heat-
961178Heat-Barracuda-
Trade Deadline --- Trades can’t be done after this day is simulated!
971195Heat-Wolves-
981200Comets-Heat-
1001227Eagles-Heat-
1011236Heat-Islanders-
1031257Americans-Heat-
1041270Heat-Islanders-
1061292Stars-Heat-
1071299Heat-Comets-
1101326Checkers-Heat-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price5030
Attendance10,0465,000
Attendance PCT50.23%50.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
33 1505 - 50.15% 97,193$971,926$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Salaries CapCoaches Salaries
915,954$ 2,945,595$ 2,945,595$ 1,000,000$0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
26,300$ 683,800$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
3,207,356$ 86 35,229$ 3,029,694$




Heat Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Heat Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Heat Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Heat Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Heat Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA