Please rotate your device to landscape mode for a better experience.
Login

Checkers
GP: 6 | W: 2 | L: 1 | OTL: 3 | P: 7
GF: 21 | GA: 21 | PP%: 35.29% | PK%: 69.23%
GM : Mikkel Aagaard | Morale : 47 | Team Overall : 56
Next Games #106 vs Stars

Game Center
Eagles
3-3-0, 6pts
2
5 Checkers
2-1-3, 7pts
Team Stats
W1StreakOTL1
1-2-0Home Record2-0-1
2-1-0Home Record0-1-2
3-3-0Last 10 Games2-1-3
2.50Goals Per Game3.50
3.33Goals Against Per Game3.50
60.00%Power Play Percentage35.29%
64.29%Penalty Kill Percentage69.23%
Checkers
2-1-3, 7pts
2
3 Admirals
6-0-0, 12pts
Team Stats
OTL1StreakW6
2-0-1Home Record4-0-0
0-1-2Home Record2-0-0
2-1-3Last 10 Games6-0-0
3.50Goals Per Game4.17
3.50Goals Against Per Game2.67
35.29%Power Play Percentage50.00%
69.23%Penalty Kill Percentage52.38%
Checkers
2-1-3, 7pts
Day 10
Stars
3-3-0, 6pts
Team Stats
OTL1StreakW1
2-0-1Home Record2-1-0
0-1-2Away Record1-2-0
2-1-3Last 10 Games3-3-0
3.50Goals Per Game2.17
3.50Goals Against Per Game2.17
35.29%Power Play Percentage25.00%
69.23%Penalty Kill Percentage33.33%
Stars
3-3-0, 6pts
Day 11
Checkers
2-1-3, 7pts
Team Stats
W1StreakOTL1
2-1-0Home Record2-0-1
1-2-0Away Record0-1-2
3-3-0Last 10 Games2-1-3
2.17Goals Per Game3.50
2.17Goals Against Per Game3.50
25.00%Power Play Percentage35.29%
33.33%Penalty Kill Percentage69.23%
Penguins
1-6-0, 2pts
Day 12
Checkers
2-1-3, 7pts
Team Stats
L3StreakOTL1
1-3-0Home Record2-0-1
0-3-0Away Record0-1-2
1-6-0Last 10 Games2-1-3
2.00Goals Per Game3.50
3.86Goals Against Per Game3.50
36.84%Power Play Percentage35.29%
52.63%Penalty Kill Percentage69.23%
Team Leaders
Goals
Aleksanteri Kaskimaki
6
Assists
Aleksanteri Kaskimaki
5
Points
Aleksanteri Kaskimaki
11
Plus/Minus
Ty Nelson
7
Wins
Damian Clara
2
Save Percentage
Damian Clara
0.806

Team Stats
Goals For
21
3.50 GFG
Shots For
105
17.50 Avg
Power Play Percentage
35.3%
6 GF
Offensive Zone Start
34.4%
Goals Against
21
3.50 GAA
Shots Against
103
17.17 Avg
Penalty Kill Percentage
69.2%%
4 GA
Defensive Zone Start
36.8%
Team Info

General ManagerMikkel Aagaard
CoachBob Murray
DivisionDivision 4
ConferenceConference 2
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance2,238
Season Tickets1,500


Roster Info

Pro Team24
Farm Team25
Contract Limit49 / 100
Prospects85


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Matias MaccelliXX100.0057409477676572694464685925656566456302531,479,000$
2Aleksanteri Kaskimaki (R)X100.0078709467717478617560596454454562556102131,340,000$
3Graeme ClarkeX99.0074708466705554625059626358454561505902421,260,000$
4Josiah SlavinX100.0078748865747581545047576353454559545902621,065,000$
5Lane PedersonX99.0070706963704845647960646260454561505802811,172,000$
6Brett HarrisonX100.0078729265736264546852526348454557495702231,106,000$
7Jake Schmaltz (R)XXX100.0076728581734848536539626258454558415702431,354,000$
8Tyce ThompsonX100.0067715865717682525049505748454554485602621,007,000$
9Jack Beck (R)X100.0075649980643531535057446242444454485402231,273,000$
10Lucas Mercuri (R)X100.0083828581834749435538446342454552485402331,338,000$
11Luke HenmanX100.0074679164675152496346466045454553485302531,320,000$
12Daylan Kuefler (R)X100.0074727861733836475047445942454550485102331,130,000$
13Samuel LabergeX100.006976536276454546504046574444445048500281974,000$
14Ty Nelson (R)X100.0072698067708087532549446040454555536002131,309,000$
15Topi NiemelaX100.0074679166687177522548406138454554375902331,342,000$
16Vsevolod Komarov (R)X100.0074786665797684502543405938454552475902131,286,000$
17Jack Peart (R)X100.0074718263726469452536395937454549475602231,275,000$
18Christian Krygier (R)X100.0076767761763634472539396137454548515302531,322,000$
19Dominik Badinka (R)X100.0063704780703230412528395237444445485002031,366,000$
Scratches
1Trevor Janicke (R)X100.0079729560723836465043446242444451445102500$
2Ryan Mast (R)X84.6583828562825558462537396437444451505702231,285,000$
3Matt Anderson (R)X100.0072707780703432472539395937444450445402600$
TEAM AVERAGE99.21747180687255575245464861444646544856
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Damian Clara (R)100.004440508945894549908145444460446102031,291,000$
2Jesper Vikman (R)100.00444050724589444889814544446050590232858,000$
Scratches
TEAM AVERAGE100.0044405081458945499081454444604760
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Bob Murray81745567646067CAN6911,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Aleksanteri KaskimakiCheckers (FLO)C665112556162201327.27%113823.06134412101131172.00%2524001.5900100120
2Lane PedersonCheckers (FLO)C6358220115102830.00%011819.7000001000030068.75%1602001.3500000101
3Jake SchmaltzCheckers (FLO)C/LW/RW635847561095533.33%411218.6901119000080055.66%10661001.4301001011
4Graeme ClarkeCheckers (FLO)RW6257-1758920111110.00%412420.72112312011050070.00%1021001.1301001011
5Ty NelsonCheckers (FLO)D61457951112102310.00%1115826.40101112011110100%056000.6300001001
6Vsevolod KomarovCheckers (FLO)D60555958145140%414824.7401101200005000%011000.6700010000
7Josiah SlavinCheckers (FLO)LW622421210125131815.38%011619.461012100001100141.46%4122000.6900101100
8Tyce ThompsonCheckers (FLO)RW6202-12093210100.00%09816.4420229000000037.50%1620000.4101000010
9Brett HarrisonCheckers (FLO)C62020008770128.57%010818.1100000000000033.33%914000.3700000000
10Matias MaccelliCheckers (FLO)LW/RW6011-300661030%09215.440110100003000%122000.2200000000
11Daylan KueflerCheckers (FLO)LW6011-200200000%0508.360000000000000%000000.4000000000
12Topi NiemelaCheckers (FLO)D6011-6209111000%512320.650110700008000%022000.1600000000
13Jack PeartCheckers (FLO)D6011-520983130%314323.9901101000006000%042000.1400000000
14Christian KrygierCheckers (FLO)D6011-1195140000%49716.170000200002000%002000.2100100000
15Luke HenmanCheckers (FLO)C6000-200210020%0366.0000000000000070.00%100000000000000
16Samuel LabergeCheckers (FLO)LW6000000110000%0132.19000000000000100.00%10000000000000
17Dominik BadinkaCheckers (FLO)D6000000100000%0447.420000000001000%00100000000000
18Jack BeckCheckers (FLO)LW6000000000000%020.480000000000000%00000000000000
19Lucas MercuriCheckers (FLO)C6000-300672000%06811.47000112000000038.89%180200000000000
Team Total or Average114213657-27640116119105246120.00%36179615.766915141151233722253.75%2532932000.6303314354
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Damian ClaraCheckers (FLO)62130.8063.28366002010341000.667360000
Team Total or Average62130.8063.2836600201034100360000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Country Rookie Weight Height No Trade Available For Trade Acquired By Last Trade Date Force Waivers Waiver Possible Contract Contract Signature Date Force UFA Emergency Recall Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Salary Cap Year 2Salary Cap Year 3Salary Cap Year 4Salary Cap Year 5Salary Cap Year 6Salary Cap Year 7Salary Cap Year 8Salary Cap Year 9Salary Cap Year 10No Trade Year 2No Trade Year 3No Trade Year 4No Trade Year 5No Trade Year 6No Trade Year 7No Trade Year 8No Trade Year 9No Trade Year 10Link
Aleksanteri KaskimakiCheckers (FLO)C212004-02-06FINYes193 Lbs6 ft0NoNoProspectNoNo32025-10-22FalseFalsePro & Farm1,340,000$1,232,321$0$0$No1,340,000$1,340,000$-------1,340,000$1,340,000$-------NoNo-------Link
Brett HarrisonCheckers (FLO)C222003-06-07CANNo190 Lbs6 ft2NoNoN/ANoNo32025-10-17FalseFalsePro & Farm1,106,000$1,017,125$0$0$No1,106,000$1,106,000$-------1,106,000$1,106,000$-------NoNo-------Link
Christian KrygierCheckers (FLO)D252000-05-05USAYes201 Lbs6 ft3NoNoProspectNoNo32025-10-22FalseFalsePro & Farm1,322,000$1,215,768$0$0$No1,322,000$1,322,000$-------1,322,000$1,322,000$-------NoNo-------Link
Damian ClaraCheckers (FLO)G202005-01-13ITAYes214 Lbs6 ft5NoNoDraftNoNo32025-10-22FalseFalsePro & Farm1,291,000$1,187,259$0$0$No1,291,000$1,291,000$-------1,291,000$1,291,000$-------NoNo-------Link
Daylan KueflerCheckers (FLO)LW232002-02-10ABYes190 Lbs6 ft2NoNoN/ANoNo32025-10-17FalseFalsePro & Farm1,130,000$1,039,196$0$0$No1,130,000$1,130,000$-------1,130,000$1,130,000$-------NoNo-------Link
Dominik BadinkaCheckers (FLO)D202005-11-27CZEYes183 Lbs6 ft3NoNoDraftNoNo32025-10-22FalseFalsePro & Farm1,366,000$1,256,232$0$0$No1,366,000$1,366,000$-------1,366,000$1,366,000$-------NoNo-------Link
Graeme ClarkeCheckers (FLO)RW242001-04-24USANo190 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm1,260,000$1,158,750$0$0$No1,260,000$--------1,260,000$--------No--------Link
Jack BeckCheckers (FLO)LW222003-04-12ONYes174 Lbs6 ft0NoNoProspectNoNo32025-10-22FalseFalsePro & Farm1,273,000$1,170,705$0$0$No1,273,000$1,273,000$-------1,273,000$1,273,000$-------NoNo-------Link
Jack PeartCheckers (FLO)D222003-05-15USAYes195 Lbs6 ft0NoNoProspectNoNo32025-10-22FalseFalsePro & Farm1,275,000$1,172,545$0$0$No1,275,000$1,275,000$-------1,275,000$1,275,000$-------NoNo-------Link
Jake SchmaltzCheckers (FLO)C/LW/RW242001-04-24USAYes190 Lbs6 ft2NoNoProspectNoNo32025-10-22FalseFalsePro & Farm1,354,000$1,245,196$0$0$No1,354,000$1,354,000$-------1,354,000$1,354,000$-------NoNo-------Link
Jesper VikmanCheckers (FLO)G232002-03-11SWEYes179 Lbs6 ft3NoNoN/ANoNo2FalseFalsePro & Farm858,000$789,054$0$0$No858,000$--------858,000$--------No--------Link
Josiah SlavinCheckers (FLO)LW261998-12-31USANo197 Lbs6 ft3NoNoN/ANoNo2FalseFalsePro & Farm1,065,000$979,420$0$0$No1,065,000$--------1,065,000$--------No--------Link
Lane PedersonCheckers (FLO)C281997-08-04CANNo190 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm1,172,000$1,077,821$0$0$No---------------------------Link / NHL Link
Lucas MercuriCheckers (FLO)C232002-03-07CANYes220 Lbs6 ft3NoNoProspectNoNo32025-10-22FalseFalsePro & Farm1,338,000$1,230,482$0$0$No1,338,000$1,338,000$-------1,338,000$1,338,000$-------NoNo-------Link
Luke HenmanCheckers (FLO)C252000-04-29NSNo180 Lbs6 ft0NoNoN/ANoNo32025-10-22FalseFalsePro & Farm1,320,000$1,213,929$0$0$No1,320,000$1,320,000$-------1,320,000$1,320,000$-------NoNo-------Link
Matias MaccelliCheckers (FLO)LW/RW252000-10-14FINNo185 Lbs5 ft11NoNoN/ANoNo32025-10-17FalseFalsePro & Farm1,479,000$1,360,152$0$0$No1,479,000$1,479,000$-------1,479,000$1,479,000$-------NoNo-------Link
Matt AndersonCheckers (FLO)D261999-04-11USAYes194 Lbs6 ft0NoNoProspectNoNo02025-10-16FalseFalsePro & Farm0$0$No---------------------------Link
Ryan Mast (Out of Payroll)Checkers (FLO)D222003-01-14USAYes217 Lbs6 ft5NoNoProspectNoNo32025-10-22FalseFalsePro & Farm1,285,000$1,181,741$0$0$Yes1,285,000$1,285,000$-------1,285,000$1,285,000$-------NoNo-------Link
Samuel LabergeCheckers (FLO)LW281997-04-10QUENo206 Lbs6 ft2NoNoN/ANoNo1FalseFalsePro & Farm974,000$895,732$0$0$No---------------------------Link
Topi NiemelaCheckers (FLO)D232002-03-25FINNo181 Lbs6 ft0NoNoN/ANoNo32025-10-22FalseFalsePro & Farm1,342,000$1,234,161$0$0$No1,342,000$1,342,000$-------1,342,000$1,342,000$-------NoNo-------Link
Trevor JanickeCheckers (FLO)RW252000-12-25USAYes200 Lbs5 ft11NoNoProspectNoNo02025-10-16FalseFalsePro & Farm0$0$No---------------------------Link
Ty NelsonCheckers (FLO)D212004-03-30CANYes198 Lbs5 ft10NoNoProspectNoNo32025-10-22FalseFalsePro & Farm1,309,000$1,203,812$0$0$No1,309,000$1,309,000$-------1,309,000$1,309,000$-------NoNo-------Link
Tyce ThompsonCheckers (FLO)RW261999-07-12CANNo193 Lbs6 ft1NoNoN/ANoNo2FalseFalsePro & Farm1,007,000$926,080$0$0$No1,007,000$--------1,007,000$--------No--------Link
Vsevolod KomarovCheckers (FLO)D212004-01-11RUSYes208 Lbs6 ft4NoNoProspectNoNo32025-10-22FalseFalsePro & Farm1,286,000$1,182,661$0$0$No1,286,000$1,286,000$-------1,286,000$1,286,000$-------NoNo-------Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2423.54195 Lbs6 ft12.421,131,333$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Aleksanteri KaskimakiJake SchmaltzLane Pederson40122
2Graeme ClarkeJosiah SlavinBrett Harrison30122
3Jake SchmaltzTyce ThompsonAleksanteri Kaskimaki20122
4Lucas MercuriAleksanteri KaskimakiGraeme Clarke10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Ty NelsonVsevolod Komarov40122
2Topi NiemelaJack Peart30122
3Jack PeartChristian Krygier20122
4Ty NelsonVsevolod Komarov10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Aleksanteri KaskimakiLucas MercuriGraeme Clarke60122
2Josiah SlavinJake SchmaltzTyce Thompson40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Ty NelsonVsevolod Komarov60122
2Jack PeartChristian Krygier40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Jake SchmaltzJosiah Slavin60122
2Aleksanteri KaskimakiGraeme Clarke40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Ty NelsonChristian Krygier60122
2Vsevolod KomarovJack Peart40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Graeme Clarke60122Ty NelsonJack Peart60122
2Aleksanteri Kaskimaki40122Christian KrygierVsevolod Komarov40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Aleksanteri KaskimakiJosiah Slavin60122
2Graeme ClarkeJake Schmaltz40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Vsevolod KomarovTy Nelson60122
2Jack PeartChristian Krygier40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Josiah SlavinGraeme ClarkeAleksanteri KaskimakiTy NelsonVsevolod Komarov
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Josiah SlavinGraeme ClarkeAleksanteri KaskimakiTy NelsonVsevolod Komarov
Extra Forwards
Normal PowerPlayPenalty Kill
Aleksanteri Kaskimaki, Graeme Clarke, Jake SchmaltzAleksanteri Kaskimaki, Graeme ClarkeGraeme Clarke
Extra Defensemen
Normal PowerPlayPenalty Kill
Jack Peart, Ty Nelson, Vsevolod KomarovTy NelsonVsevolod Komarov, Ty Nelson
Penalty Shots
Jake Schmaltz, Graeme Clarke, Tyce Thompson, Lucas Mercuri, Aleksanteri Kaskimaki
Goalie
#1 : Damian Clara, #2 : Jesper Vikman


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals1000010023-1000000000001000010023-110.500235003126093245274123172222100.00%10100.00%0428549.41%559160.44%397154.93%102361076915578
2Americans11000000642110000006420000000000021.000610160031260283245274261614164125.00%20100.00%0428549.41%559160.44%397154.93%102361076915578
3Eagles11000000523110000005230000000000021.00058130031260173245274902144250.00%110.00%0428549.41%559160.44%397154.93%102361076915578
4Heat1000010045-11000010045-10000000000010.50048120031260133245274203414100.00%2150.00%1428549.41%559160.44%397154.93%102361076915578
5Moose1010000013-2000000000001010000013-200.0001120031260153245274154918300.00%20100.00%0428549.41%559160.44%397154.93%102361076915578
6Penguins1000000134-1000000000001000000134-110.5003690031260233245274211030323133.33%5260.00%0428549.41%559160.44%397154.93%102361076915578
Total6210020121210320001001511430100101610-470.58321365700312601053245274103367611617635.29%13469.23%1428549.41%559160.44%397154.93%102361076915578
_Since Last GM Reset6210020121210320001001511430100101610-470.58321365700312601053245274103367611617635.29%13469.23%1428549.41%559160.44%397154.93%102361076915578
_Vs Conference6210020121210320001001511430100101610-470.58321365700312601053245274103367611617635.29%13469.23%1428549.41%559160.44%397154.93%102361076915578
_Vs Division1210020134-1020001000001010010134-173.5003690031260233245274211030323133.33%5260.00%0428549.41%559160.44%397154.93%102361076915578

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
67OTL1213657105103367611600
All Games
GPWLOTWOTL SOWSOLGFGA
62102012121
Home Games
GPWLOTWOTL SOWSOLGFGA
32001001511
Visitor Games
GPWLOTWOTL SOWSOLGFGA
3010101610
Last 10 Games
WLOTWOTL SOWSOL
210201
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
17635.29%13469.23%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
324527431260
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
428549.41%559160.44%397154.93%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
102361076915578


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
18Checkers1Moose3LBox score
217Heat5Checkers4LXBox score
435Checkers3Penguins4LXXBox score
547Americans4Checkers6WBox score
772Eagles2Checkers5WBox score
994Checkers2Admirals3LXBox score
10106Checkers-Stars-
11120Stars-Checkers-
12131Penguins-Checkers-
13156Eagles-Checkers-
15166Checkers-Admirals-
16191Heat-Checkers-
17196Checkers-Penguins-
18219Islanders-Checkers-
19234Checkers-Eagles-
20246Checkers-Rocket-
22257Wild-Checkers-
24284Roadrunners-Checkers-
25294Checkers-Admirals-
27311Admirals-Checkers-
28326Checkers-Americans-
29345Condors-Checkers-
30356Checkers-Senators-
31372IceHogs-Checkers-
32381Checkers-Eagles-
33396Checkers-Reign-
34416Crunch-Checkers-
35427Checkers-IceHogs-
36444Checkers-Marlies-
37459Phantoms-Checkers-
39476Bears-Checkers-
40494Monsters-Checkers-
41511Checkers-Moose-
42525Thunderbirds-Checkers-
43538Checkers-Bears-
44552Checkers-Bruins-
45570Checkers-Moose-
46580Admirals-Checkers-
47599Bruins-Checkers-
49622Checkers-Stars-
50636Canucks-Checkers-
51656Wolf Pack-Checkers-
53673Checkers-Condors-
54690Rocket-Checkers-
55707Checkers-Barracuda-
56719Checkers-Monsters-
57728Wild-Checkers-
59750Checkers-Silver Knights-
60763Moose-Checkers-
61781Checkers-Wolves-
62790Heat-Checkers-
64809Comets-Checkers-
65828Checkers-Comets-
66839Checkers-Wild-
68852Marlies-Checkers-
69868Checkers-Penguins-
70883Reign-Checkers-
72903Checkers-Griffins-
73912Penguins-Checkers-
74935Americans-Checkers-
76951Checkers-Islanders-
77965Gulls-Checkers-
79979Checkers-Rocket-
80995Checkers-Crunch-
811004Wolves-Checkers-
831028Americans-Checkers-
841040Checkers-Stars-
851057Stars-Checkers-
861067Checkers-Reign-
881087Senators-Checkers-
891100Checkers-Phantoms-
901119Barracuda-Checkers-
921142Checkers-Heat-
931151Moose-Checkers-
951169Checkers-Wolf Pack-
961183Silver Knights-Checkers-
Trade Deadline --- Trades can’t be done after this day is simulated!
981203Checkers-Roadrunners-
991217Phantoms-Checkers-
1021245Eagles-Checkers-
1031254Checkers-Thunderbirds-
1041274Silver Knights-Checkers-
1051279Checkers-Gulls-
1071298Checkers-Canucks-
1081304Griffins-Checkers-
1091314Checkers-Americans-
1101326Checkers-Heat-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3515
Attendance4,4072,306
Attendance PCT73.45%76.87%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
40 2238 - 74.59% 93,788$281,364$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Salaries CapCoaches Salaries
298,539$ 2,715,200$ 2,715,200$ 1,000,000$0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
23,096$ 207,864$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
3,751,520$ 103 33,171$ 3,416,613$




Checkers Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Checkers Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Checkers Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Checkers Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Checkers Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA