Connexion

Checkers
GP: 7 | W: 3 | L: 4
GF: 23 | GA: 32 | PP%: 37.93% | PK%: 87.50%
DG: Mikkel Aagaard | Morale : 19 | Moyenne d’équipe : 59
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Centre de jeu
Heat
10-7-0, 20pts
5
FINAL
1 Checkers
3-4-0, 6pts
Team Stats
OTL2SéquenceL2
5-4-0Fiche domicile1-2-0
5-3-0Fiche domicile2-2-0
6-2-2Derniers 10 matchs3-4-0
3.71Buts par match 3.29
3.00Buts contre par match 4.57
22.50%Pourcentage en avantage numérique37.93%
70.37%Pourcentage en désavantage numérique87.50%
Checkers
3-4-0, 6pts
2
FINAL
4 Heat
10-7-0, 20pts
Team Stats
L2SéquenceOTL2
1-2-0Fiche domicile5-4-0
2-2-0Fiche domicile5-3-0
3-4-0Derniers 10 matchs6-2-2
3.29Buts par match 3.71
4.57Buts contre par match 3.00
37.93%Pourcentage en avantage numérique22.50%
87.50%Pourcentage en désavantage numérique70.37%
Meneurs d'équipe
Buts
John Beecher
5
Passes
Olen Zellweger
11
Points
Olen Zellweger
11
John HaydenPlus/Moins
John Hayden
2

Statistiques d’équipe
Buts pour
23
3.29 GFG
Tirs pour
150
21.43 Avg
Pourcentage en avantage numérique
37.9%
11 GF
Début de zone offensive
29.8%
Buts contre
32
4.57 GAA
Tirs contre
220
31.43 Avg
Pourcentage en désavantage numérique
87.5%%
2 GA
Début de la zone défensive
38.8%
Informations de l'équipe

Directeur généralMikkel Aagaard
EntraîneurBob Murray
DivisionDivision 4
ConférenceConference 2
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance2,544
Billets de saison1,500


Informations de la formation

Équipe Pro30
Équipe Mineure19
Limite contact 49 / 100
Espoirs87


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Lane PedersonX100.0075708065707274698066696461585762756502721,172,000$
2John Beecher (R)X100.008769866881578167915967772553526479650242925,000$
3Vasily PodkolzinXX100.009947888272576269376359612562625972640231875,698$
4Milan LucicX100.0087708270825997493966585925919260746403721,348,000$
5Pontus HolmbergXX100.007342916663598664566567682559586374630252827,500$
6Aatu Raty (R)X100.007670926373808563806262625948486375630222902,500$
7Shane Wright (R)X100.007672917874687062805962646147466463630213918,333$
8Graeme Clarke (R)XX100.0070638770668084648059675862474763766302431,260,000$
9Martin PospisilX100.009978567671636364426964602554546546630252941,000$
10John HaydenXXX100.0076807178807277547145566655676759646203011,300,000$
11Zack Ostapchuk (R)X100.007677817679707454704559625846466074600223825,000$
12Kyle CliffordX100.0063783764786466595054556454808456746003412,900,000$
13Joona KoppanenXX100.007875896375758154655648644545455621580271965,000$
14Olen Zellweger (R)X100.006541968265787275256454682550496026650213844,167$
15Mark FriedmanX100.0079747573695958602542466725565757496102911,000,000$
16Brandon ScanlinX100.008280816281727851253947644448475174610262966,000$
17Adam WilsbyX100.007367906870758251253947584448475267590242842,500$
18Topi Niemela (R)X100.006560826762677154254945554347475364570231750,000$
19Lian Bichsel (R)X100.007283476585525251254841583946464947560211750,000$
Rayé
1Luke HenmanX100.006962846662687254684756595344445820560251775,615$
2Josiah SlavinX100.0067618165617784536649535850444457205602631,065,000$
3Tyce ThompsonX100.0068667262667177515051465844444454205502531,007,000$
4Samuel LabergeX100.007276646876636751645048604644445520550282974,000$
5C.J. SuessX100.0075698862696873515047516148444457205503111,200,000$
6Brett Harrison (R)X100.007870956070586150634848634644445620540211750,000$
7Daylan Kuefler (R)X100.006671536471525352504753575044445420530231750,000$
8Josh WesleyX100.008176996476484944253338613747464849550291750,000$
9Chris HarpurX100.0080769160765051472538396237454550465502811,000,000$
MOYENNE D’ÉQUIPE100.00766980687266715752525462435252575160
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire
1Jesper Wallstedt (R)100.005852658360625563605830464655786002221,350,000$
2Dylan Garand (R)100.00495063624950505450513044445130510222902,500$
Rayé
MOYENNE D’ÉQUIPE100.0054516473555653595555304545535456
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Bob Murray81745567646067CAN6811,000,000$


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Olen ZellwegerCheckers (FLO)D701111-100061510350%1221030.04066122000117000%016001.0500000001
2John BeecherCheckers (FLO)C7549-112010152441020.83%616924.194261021000081060.00%8004001.0600000010
3Graeme ClarkeCheckers (FLO)C/RW7538-600128210723.81%013819.774261121000051033.33%602001.1600000100
4Milan LucicCheckers (FLO)RW7257-12401012112718.18%414520.76257321000000136.51%12623000.9600000000
5Vasily PodkolzinCheckers (FLO)LW/RW7336-70010201741017.65%415922.80101316000061037.68%6951000.7500000000
6Martin PospisilCheckers (FLO)RW7415-680108104840.00%312417.7400000000000025.00%431000.8100000000
7Aatu RatyCheckers (FLO)C7123000913101510.00%213719.650114150000160068.97%2900000.4400000000
8Lane PedersonCheckers (FLO)C7123-820813171065.88%318626.670113150000140140.91%2253000.3200000000
9Adam WilsbyCheckers (FLO)D7033-8554137320%918025.78011013000014000%023000.3300001000
10Pontus HolmbergCheckers (FLO)C/LW7112-900914115129.09%514020.0500001000060053.85%1302000.2800000000
11Brandon ScanlinCheckers (FLO)D7022-6262012133220%1119728.25000024000014000%006000.2000013000
12Mark FriedmanCheckers (FLO)D7011-138015105310%1318426.3600001600007000%032000.1100000000
13Kyle CliffordCheckers (FLO)LW71011200220050.00%0243.47000000000000100.00%200000.8200000001
14John HaydenCheckers (FLO)C/LW/RW7000200761020%17010.0200001000000080.00%50400000000000
15Shane WrightCheckers (FLO)C7000200031100%0223.160000000000000%60000000000000
16Zack OstapchukCheckers (FLO)C7000000000000%030.490000000000000%10000000000000
17Lian BichselCheckers (FLO)D7000100130000%07010.080000000003000%00100000000000
18Topi NiemelaCheckers (FLO)D7000000110000%0466.700000000000000%00000000000000
19Joona KoppanenCheckers (FLO)C/LW7000000000000%000.060000000000000%00000000000000
Statistiques d’équipe totales ou en moyenne133233861-905725124169150427715.33%73221216.631118293519300011143245.45%3632138000.5500014112
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Jesper WallstedtCheckers (FLO)73300.8594.283930028199108000070000
2Dylan GarandCheckers (FLO)20100.8104.53530042110000007000
Statistiques d’équipe totales ou en moyenne93400.8554.30447003222011800077000


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Pays Recrue Poids Taille Non-échange Disponible pour échange Acquis Par Date de la Dernière Transaction Ballotage forcé Waiver Possible Contrat Date du Signature du Contrat Forcer UFA Rappel d'urgence Type Salaire actuel Salaire restantPlafond salarial Plafond salarial restant Exclus du plafond salarial Salaire année 2Salaire année 3Salaire année 4Salaire année 5Salaire année 6Salaire année 7Salaire année 8Salaire année 9Salaire année 10Plafond salarial année 2Plafond salarial année 3Plafond salarial année 4Plafond salarial année 5Plafond salarial année 6Plafond salarial année 7Plafond salarial année 8Plafond salarial année 9Plafond salarial année 10Non-échange année 2Non-échange année 3Non-échange année 4Non-échange année 5Non-échange année 6Non-échange année 7Non-échange année 8Non-échange année 9Non-échange année 10Lien
Aatu RatyCheckers (FLO)C222002-11-14FINYes185 Lbs6 ft2NoNoN/ANoNo2FalseFalsePro & Farm902,500$0$0$No902,500$--------902,500$--------No--------Lien
Adam WilsbyCheckers (FLO)D242000-07-08SWENo183 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm842,500$0$0$No842,500$--------842,500$--------No--------Lien
Brandon ScanlinCheckers (FLO)D261999-06-02ONTNo213 Lbs6 ft4NoNoN/ANoNo2FalseFalsePro & Farm966,000$0$0$No966,000$--------966,000$--------No--------Lien
Brett HarrisonCheckers (FLO)C212003-07-07ONTYes188 Lbs6 ft2NoNoN/ANoNo1FalseFalsePro & Farm750,000$0$0$No---------------------------
C.J. SuessCheckers (FLO)LW311994-03-16USANo190 Lbs5 ft11NoNoN/ANoNo1FalseFalsePro & Farm1,200,000$0$0$No---------------------------Lien / Lien NHL
Chris HarpurCheckers (FLO)D281996-09-13ONTNo201 Lbs6 ft3NoNoAssign ManuallyNoNo12025-01-20FalseFalsePro & Farm1,000,000$0$0$No---------------------------Lien
Daylan KueflerCheckers (FLO)LW232002-02-10ABYes192 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm750,000$0$0$No---------------------------
Dylan GarandCheckers (FLO)G222002-07-06BCYes173 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm902,500$0$0$No902,500$--------902,500$--------No--------Lien
Graeme ClarkeCheckers (FLO)C/RW242001-04-24USAYes174 Lbs5 ft11NoNoN/ANoNo3FalseFalsePro & Farm1,260,000$0$0$No1,260,000$1,260,000$-------1,260,000$1,260,000$-------NoNo-------Lien
Jesper WallstedtCheckers (FLO)G222002-11-14SWEYes213 Lbs6 ft3NoNoN/ANoNo2FalseFalsePro & Farm1,350,000$0$0$No1,350,000$--------1,350,000$--------No--------Lien
John BeecherCheckers (FLO)C242001-05-04USAYes209 Lbs6 ft3NoNoN/ANoNo2FalseFalsePro & Farm925,000$0$0$No925,000$--------925,000$--------No--------Lien
John HaydenCheckers (FLO)C/LW/RW301995-02-14USANo216 Lbs6 ft3NoNoN/ANoNo1FalseFalsePro & Farm1,300,000$0$0$No---------------------------Lien / Lien NHL
Joona KoppanenCheckers (FLO)C/LW271998-02-25FINNo194 Lbs6 ft5NoNoN/ANoNo1FalseFalsePro & Farm965,000$0$0$No---------------------------Lien / Lien NHL
Josh WesleyCheckers (FLO)D291996-04-09USANo200 Lbs6 ft3NoNoN/ANoNo1FalseFalsePro & Farm750,000$0$0$No---------------------------Lien
Josiah SlavinCheckers (FLO)C261998-12-31USANo161 Lbs6 ft0NoNoN/ANoNo3FalseFalsePro & Farm1,065,000$0$0$No1,065,000$1,065,000$-------1,065,000$1,065,000$-------NoNo-------Lien
Kyle CliffordCheckers (FLO)LW341991-01-13ONTNo211 Lbs6 ft2NoNoFree AgentNoNo12024-10-16FalseFalsePro & Farm2,900,000$0$0$No---------------------------Lien / Lien NHL
Lane PedersonCheckers (FLO)C271997-08-04SKWNo190 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm1,172,000$0$0$No1,172,000$--------1,172,000$--------No--------Lien / Lien NHL
Lian BichselCheckers (FLO)D212004-05-18SWIYes216 Lbs6 ft6NoNoN/ANoNo1FalseFalsePro & Farm750,000$0$0$No---------------------------
Luke HenmanCheckers (FLO)C252000-04-29NSNo168 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm775,615$0$0$No---------------------------Lien
Mark FriedmanCheckers (FLO)D291995-12-25ONTNo185 Lbs5 ft11NoNoAssign ManuallyNoNo12025-02-17FalseFalsePro & Farm1,000,000$0$0$No---------------------------Lien / Lien NHL
Martin PospisilCheckers (FLO)RW251999-11-19SVKNo180 Lbs6 ft2NoNoN/ANoNo2FalseFalsePro & Farm941,000$0$0$No941,000$--------941,000$--------No--------Lien
Milan LucicCheckers (FLO)RW371988-06-07BCNo231 Lbs6 ft3NoNoN/ANoNo2FalseFalsePro & Farm1,348,000$0$0$No1,348,000$--------750,000$--------No--------Lien / Lien NHL
Olen ZellwegerCheckers (FLO)D212003-09-10ABYes174 Lbs5 ft10NoNoN/ANoNo3FalseFalsePro & Farm844,167$0$0$No844,167$844,167$-------844,167$844,167$-------NoNo-------
Pontus HolmbergCheckers (FLO)C/LW251999-09-03SWENo174 Lbs5 ft10NoNoN/ANoNo2FalseFalsePro & Farm827,500$0$0$No827,500$--------827,500$--------No--------Lien
Samuel LabergeCheckers (FLO)C281997-04-10QUENo205 Lbs6 ft2NoNoN/ANoNo2FalseFalsePro & Farm974,000$0$0$No974,000$--------974,000$--------No--------Lien
Shane WrightCheckers (FLO)C212004-01-05ONTYes198 Lbs6 ft1NoNoN/ANoNo3FalseFalsePro & Farm918,333$0$0$No918,333$918,333$-------918,333$918,333$-------NoNo-------
Topi NiemelaCheckers (FLO)D232002-03-25FINYes160 Lbs5 ft11NoNoN/ANoNo1FalseFalsePro & Farm750,000$0$0$No---------------------------
Tyce ThompsonCheckers (FLO)RW251999-07-11ABNo178 Lbs6 ft1NoNoN/ANoNo3FalseFalsePro & Farm1,007,000$0$0$No1,007,000$1,007,000$-------1,007,000$1,007,000$-------NoNo-------Lien
Vasily PodkolzinCheckers (FLO)LW/RW232001-06-24RUSNo189 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm875,698$0$0$No---------------------------Lien
Zack OstapchukCheckers (FLO)C222003-05-29ABYes202 Lbs6 ft4NoNoN/ANoNo3FalseFalsePro & Farm825,000$0$0$No825,000$825,000$-------825,000$825,000$-------NoNo-------
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
3025.50192 Lbs6 ft11.771,027,894$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Pontus HolmbergMilan LucicLane Pederson40122
2Vasily PodkolzinJohn BeecherMartin Pospisil30122
3John BeecherVasily PodkolzinLane Pederson20122
4Aatu RatyLane PedersonGraeme Clarke10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Olen ZellwegerBrandon Scanlin40122
2Adam WilsbyMark Friedman30122
3Olen ZellwegerMark Friedman20122
4Adam WilsbyBrandon Scanlin10122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1John BeecherMilan LucicGraeme Clarke60122
2Aatu RatyLane PedersonVasily Podkolzin40122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Olen ZellwegerBrandon Scanlin60122
2Adam WilsbyMark Friedman40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Aatu RatyLane Pederson60122
2John BeecherGraeme Clarke40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Brandon ScanlinOlen Zellweger60122
2Mark FriedmanAdam Wilsby40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1John Beecher60122Brandon ScanlinAdam Wilsby60122
2Lane Pederson40122Mark FriedmanOlen Zellweger40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1John BeecherLane Pederson60122
2Graeme ClarkeAatu Raty40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Adam WilsbyBrandon Scanlin60122
2Mark FriedmanOlen Zellweger40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Lane PedersonMilan LucicJohn BeecherAdam WilsbyBrandon Scanlin
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Lane PedersonMilan LucicJohn BeecherAdam WilsbyBrandon Scanlin
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
John Beecher, Graeme Clarke, Aatu RatyLane Pederson, John BeecherJohn Beecher
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Brandon Scanlin, Olen Zellweger, Adam WilsbyBrandon ScanlinAdam Wilsby, Brandon Scanlin
Tirs de pénalité
Milan Lucic, Graeme Clarke, Aatu Raty, John Beecher, Lane Pederson
Gardien
#1 : Jesper Wallstedt, #2 : Dylan Garand


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Heat734000002332-931200000712-5422000001620-460.429233861002910215020596922207357124291137.93%16287.50%04510841.67%7414152.48%4611440.35%130501447917388
Total734000002332-931200000712-5422000001620-460.429233861002910215020596922207357124291137.93%16287.50%04510841.67%7414152.48%4611440.35%130501447917388
_Since Last GM Reset734000002332-931200000712-5422000001620-460.429233861002910215020596922207357124291137.93%16287.50%04510841.67%7414152.48%4611440.35%130501447917388
_Vs Conference734000002332-931200000712-5422000001620-460.429233861002910215020596922207357124291137.93%16287.50%04510841.67%7414152.48%4611440.35%130501447917388

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
76L2233861150220735712400
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
73400002332
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
3120000712
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
42200001620
Derniers 10 matchs
WLOTWOTL SOWSOL
340000
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
291137.93%16287.50%0
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
205969229102
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
4510841.67%7414152.48%4611440.35%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
130501447917388


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
26Checkers4Heat8LSommaire du match
414Checkers5Heat4WXSommaire du match
622Heat5Checkers3LSommaire du match
830Heat2Checkers3WSommaire du match
1038Checkers5Heat4WXSommaire du match
1246Heat5Checkers1LSommaire du match
1454Checkers2Heat4LSommaire du match



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets3515
Assistance4,9722,659
Assistance PCT82.87%88.63%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
43 2544 - 84.79% 106,240$318,719$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursPlafond Salariale total des joueursSalaire des entraineurs
0$ 3,083,682$ 3,023,882$ 1,000,000$0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
0$ 0$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 0 0$ 0$




Checkers Leaders statistiques des joueurs (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Checkers Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Checkers Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Checkers Leaders statistiques des joueurs (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Checkers Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA