Login

Monsters
GP: 4 | W: 1 | L: 1 | OTL: 2 | P: 4
GF: 8 | GA: 12 | PP%: 14.29% | PK%: 60.00%
GM : Trent Zeigler | Morale : 48 | Team Overall : 58
Next Games #70 vs Rocket
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Wolves
2-1-1, 5pts
3
FINAL
2 Monsters
1-1-2, 4pts
Team Stats
OTL1StreakL1
0-1-1Home Record0-0-2
2-0-0Home Record1-1-0
2-1-1Last 10 Games1-1-2
2.25Goals Per Game2.00
3.00Goals Against Per Game3.00
25.00%Power Play Percentage14.29%
66.67%Penalty Kill Percentage60.00%
Monsters
1-1-2, 4pts
4
FINAL
7 Senators
3-0-1, 7pts
Team Stats
L1StreakW2
0-0-2Home Record2-0-0
1-1-0Home Record1-0-1
1-1-2Last 10 Games3-0-1
2.00Goals Per Game4.50
3.00Goals Against Per Game2.50
14.29%Power Play Percentage46.67%
60.00%Penalty Kill Percentage84.62%
Rocket
2-1-1, 5pts
Day 7
Monsters
1-1-2, 4pts
Team Stats
W1StreakL1
1-0-1Home Record0-0-2
1-1-0Away Record1-1-0
2-1-1Last 10 Games1-1-2
0.75Goals Per Game2.00
0.75Goals Against Per Game2.00
16.67%Power Play Percentage14.29%
66.67%Penalty Kill Percentage60.00%
IceHogs
2-1-1, 5pts
Day 9
Monsters
1-1-2, 4pts
Team Stats
W1StreakL1
0-1-1Home Record0-0-2
2-0-0Away Record1-1-0
2-1-1Last 10 Games1-1-2
2.00Goals Per Game2.00
2.00Goals Against Per Game2.00
33.33%Power Play Percentage14.29%
87.50%Penalty Kill Percentage60.00%
Monsters
1-1-2, 4pts
Day 10
Comets
1-2-0, 2pts
Team Stats
L1StreakW1
0-0-2Home Record1-1-0
1-1-0Away Record0-1-0
1-1-2Last 10 Games1-2-0
2.00Goals Per Game1.67
3.00Goals Against Per Game1.67
14.29%Power Play Percentage28.57%
60.00%Penalty Kill Percentage40.00%
Team Leaders
Goals
Isak Rosen
4
Assists
Cole Guttman
3
Points
Isak Rosen
5
Plus/Minus
Isak Rosen
2
Wins
Jacob Ingham
1
Save Percentage
Jacob Ingham
0.851

Team Stats
Goals For
8
2.00 GFG
Shots For
52
13.00 Avg
Power Play Percentage
14.3%
1 GF
Offensive Zone Start
28.7%
Goals Against
12
3.00 GAA
Shots Against
74
18.50 Avg
Penalty Kill Percentage
60.0%%
4 GA
Defensive Zone Start
43.4%
Team Info

General ManagerTrent Zeigler
CoachJim Montgomery
DivisionDivision 2
ConferenceConference 1
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance2,064
Season Tickets1,500


Roster Info

Pro Team23
Farm Team18
Contract Limit41 / 100
Prospects62


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Isak Rosen (R)X98.0075679472678185695064736665464668516602211,450,000$
2Glenn GawdinX98.0075747770748287678065676662454566496502821,240,000$
3Cole GuttmanXXX98.007165857065818666806466636045456550640261950,000$
4Brian Halonen (R)X100.007574787174778163505271646545456549630261996,000$
5Egor Sokolov (R)X100.0084809268808187615056616858444466516302531,495,000$
6Owen Beck (R)X99.0084459981715591596558555825454562486102131,333,000$
7Tristan Broz (R)X100.0077748566745352617655636560444463495902331,350,000$
8Givani SmithX100.0080996375814546612550556825616260495902721,136,000$
9Martin ChromiakX100.007870956770565561505662655944446449590231820,000$
10Trevor Connelly (R)X100.0062636080633832635062615858444460485701931,300,000$
11Jacob PerreaultX100.0072717464716164525053466044444454485502331,106,000$
12Adam RaskaXX100.0064666064666772505047475645444453485402431,315,000$
13Tucker RobertsonX100.0074678963675658506347486146444454495402231,256,000$
14Valtteri PulliX98.008680998080353156255642683745455449600242800,000$
15Billy SweezeyX100.0073747163747381462537395937444452455702911,000,000$
16Ethan FrischX99.007569886369515348253942613945455048550252800,000$
17Ben ZlotyX100.0073688580683532492543396037444452485502311,000,000$
18Tyson FeistX100.006969688069353346253739573744444949530242800,000$
19Leon Muggli (R)X100.0075659980653230412528395937444448385201931,261,000$
Scratches
1Connor Clattenburg (R)X100.0083769980763230445538446442444452465202031,265,000$
2Kyle Jackson (R)XXX100.0058722580723331445538445142444446464902331,467,000$
TEAM AVERAGE99.52747180727155585548505362474545574858
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Jacob Ingham98.004440508645904649918145444460536102531,250,000$
2Connor Hughes100.005240509355545659585830444454505702911,000,000$
Scratches
TEAM AVERAGE99.0048405090507251547570384444575259
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Jim Montgomery80808080808080CAN5111,600,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Isak RosenMonsters (CBJ)RW441522017132330.77%19523.8000025000070161.90%2140011.0511000010
2Cole GuttmanMonsters (CBJ)C/LW/RW41342406511249.09%29423.7000005000140065.63%3220000.8412000100
3Glenn GawdinMonsters (CBJ)C42131007593422.22%29223.1510145000080066.67%920000.6502000001
4Valtteri PulliMonsters (CBJ)D40222003104220%810225.670110500008000%036000.3900000000
5Owen BeckMonsters (CBJ)C4011-300472010%08020.2001115000030066.67%630000.2500000000
6Brian HalonenMonsters (CBJ)LW40110408131120%18621.6400005000030075.00%3201000.2322000000
7Egor SokolovMonsters (CBJ)LW4011-3175661100%07819.5200004000000051.52%3300000.2602100000
8Tyson FeistMonsters (CBJ)D4011120340000%16416.240000200000000%000000.3100000000
9Ethan FrischMonsters (CBJ)D4011-220283010%210325.830000400007000%020000.1900000000
10Adam RaskaMonsters (CBJ)LW/RW4000-120920000%26516.28000010000300100.00%10300000000001
11Jacob PerreaultMonsters (CBJ)RW4000-100361000%04812.140000000000000%00000000000000
12Tristan BrozMonsters (CBJ)C4000000534010%14210.5100000000100061.54%130200011000000
13Tucker RobertsonMonsters (CBJ)C4000000000000%061.510000000000000%00000001000000
14Givani SmithMonsters (CBJ)RW4000020300000%0133.430000000000000%00100000000000
15Martin ChromiakMonsters (CBJ)RW4000000000000%000.060000000000000%00000011000000
16Billy SweezeyMonsters (CBJ)D4000-100141110%39724.310000600009000%00100000000000
17Leon MuggliMonsters (CBJ)D4000000020000%0358.770000000001000%00000000000000
18Trevor ConnellyMonsters (CBJ)LW4000-100120010%0256.320000000000000%00000001000000
19Ben ZlotyMonsters (CBJ)D4000-100152100%38220.640001400004000%02000000000000
Team Total or Average7671219-5355638952132013.46%26121415.991238550002630163.95%1471814010.31613100112
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Jacob InghamMonsters (CBJ)41120.8512.6425001117434000.5381340010
Team Total or Average41120.8512.6425001117434001340010


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Country Rookie Weight Height No Trade Available For Trade Acquired By Last Trade Date Force Waivers Waiver Possible Contract Contract Signature Date Force UFA Emergency Recall Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Salary Cap Year 2Salary Cap Year 3Salary Cap Year 4Salary Cap Year 5Salary Cap Year 6Salary Cap Year 7Salary Cap Year 8Salary Cap Year 9Salary Cap Year 10No Trade Year 2No Trade Year 3No Trade Year 4No Trade Year 5No Trade Year 6No Trade Year 7No Trade Year 8No Trade Year 9No Trade Year 10Link
Adam RaskaMonsters (CBJ)LW/RW242001-09-25CZENo185 Lbs5 ft10NoNoN/ANoNo32025-10-22FalseFalsePro & Farm1,315,000$1,256,295$0$0$No1,315,000$1,315,000$-------1,315,000$1,315,000$-------NoNo-------Link
Ben ZlotyMonsters (CBJ)D232002-02-24ABNo187 Lbs6 ft0NoNoAssign ManuallyNoNo12025-12-08FalseFalsePro & Farm1,000,000$955,357$0$0$No---------------------------Link
Billy SweezeyMonsters (CBJ)D291996-02-06USANo204 Lbs6 ft1NoNoAssign ManuallyNoNo12025-12-08FalseFalsePro & Farm1,000,000$955,357$0$0$No---------------------------Link
Brian HalonenMonsters (CBJ)LW261999-01-11USAYes207 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm996,000$951,536$0$0$No---------------------------Link
Cole GuttmanMonsters (CBJ)C/LW/RW261999-04-06USANo181 Lbs5 ft10NoNoN/ANoNo1FalseFalsePro & Farm950,000$907,589$0$0$No---------------------------Link
Connor ClattenburgMonsters (CBJ)C202005-05-02ONYes205 Lbs6 ft2NoNoDraftNoNo32025-10-22FalseFalsePro & Farm1,265,000$1,208,527$0$0$No1,265,000$1,265,000$-------1,265,000$1,265,000$-------NoNo-------Link
Connor HughesMonsters (CBJ)G291996-09-10SWINo231 Lbs6 ft4NoNoAssign ManuallyNoNo12025-12-08FalseFalsePro & Farm1,000,000$955,357$0$0$No---------------------------Link
Egor SokolovMonsters (CBJ)LW252000-06-07RUSYes217 Lbs6 ft3NoNoDraftNoNo32025-10-22FalseFalsePro & Farm1,495,000$1,428,259$0$0$No1,495,000$1,495,000$-------1,495,000$1,495,000$-------NoNo-------Link
Ethan FrischMonsters (CBJ)D252000-10-29USANo192 Lbs5 ft11NoNoFree AgentNoNo22024-10-16FalseFalsePro & Farm800,000$764,286$0$0$No800,000$--------800,000$--------No--------Link
Givani SmithMonsters (CBJ)RW271998-02-27CANNo214 Lbs6 ft2NoNoN/ANoNo2FalseFalsePro & Farm1,136,000$1,085,286$0$0$No1,136,000$--------1,136,000$--------No--------Link / NHL Link
Glenn GawdinMonsters (CBJ)C281997-03-25CANNo201 Lbs6 ft1NoNoN/ANoNo2FalseFalsePro & Farm1,240,000$1,184,643$0$0$No1,240,000$--------1,240,000$--------No--------Link / NHL Link
Isak RosenMonsters (CBJ)RW222003-03-15SWEYes180 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm1,450,000$1,385,268$0$0$No---------------------------Link
Jacob InghamMonsters (CBJ)G252000-06-10ONTNo205 Lbs6 ft5NoNoN/ANoNo32025-12-08FalseFalsePro & Farm1,250,000$1,194,196$0$0$No1,250,000$1,250,000$-------1,250,000$1,250,000$-------NoNo-------Link
Jacob PerreaultMonsters (CBJ)RW232002-04-15CANNo196 Lbs6 ft0NoNoN/ANoNo32025-10-17FalseFalsePro & Farm1,106,000$1,056,625$0$0$No1,106,000$1,106,000$-------1,106,000$1,106,000$-------NoNo-------Link
Kyle JacksonMonsters (CBJ)C/LW/RW232002-10-17CANYes192 Lbs6 ft2NoNoProspectNoNo32025-10-22FalseFalsePro & Farm1,467,000$1,401,509$0$0$No1,467,000$1,467,000$-------1,467,000$1,467,000$-------NoNo-------Link
Leon MuggliMonsters (CBJ)D192006-07-09SWIYes173 Lbs6 ft1NoNoDraftNoNo32025-10-22FalseFalsePro & Farm1,261,000$1,204,705$0$0$No1,261,000$1,261,000$-------1,261,000$1,261,000$-------NoNo-------Link
Martin ChromiakMonsters (CBJ)RW232002-08-20SVKNo190 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm820,000$783,393$0$0$No---------------------------Link
Owen BeckMonsters (CBJ)C212004-02-03CANYes199 Lbs6 ft0NoNoProspectNoNo32025-10-22FalseFalsePro & Farm1,333,000$1,273,491$0$0$No1,333,000$1,333,000$-------1,333,000$1,333,000$-------NoNo-------Link
Trevor ConnellyMonsters (CBJ)LW192006-02-28USAYes165 Lbs6 ft1NoNoDraftNoNo32025-10-22FalseFalsePro & Farm1,300,000$1,241,964$0$0$No1,300,000$1,300,000$-------1,300,000$1,300,000$-------NoNo-------Link
Tristan BrozMonsters (CBJ)C232002-10-10USAYes205 Lbs6 ft0NoNoProspectNoNo32025-10-22FalseFalsePro & Farm1,350,000$1,289,732$0$0$No1,350,000$1,350,000$-------1,350,000$1,350,000$-------NoNo-------Link
Tucker RobertsonMonsters (CBJ)C222003-06-22CANNo189 Lbs5 ft11NoNoN/ANoNo32025-10-22FalseFalsePro & Farm1,256,000$1,199,929$0$0$No1,256,000$1,256,000$-------1,256,000$1,256,000$-------NoNo-------Link
Tyson FeistMonsters (CBJ)D242001-01-14BCNo181 Lbs6 ft2NoNoFree AgentNoNo22024-10-16FalseFalsePro & Farm800,000$764,286$0$0$No800,000$--------800,000$--------No--------Link
Valtteri PulliMonsters (CBJ)D242001-03-13FINNo209 Lbs6 ft6NoNoFree AgentNoNo22024-10-16FalseFalsePro & Farm800,000$764,286$0$0$No800,000$--------800,000$--------No--------Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2323.91196 Lbs6 ft12.171,147,391$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Cole GuttmanEgor SokolovIsak Rosen40122
2Owen BeckBrian HalonenGlenn Gawdin30122
3Glenn GawdinCole GuttmanIsak Rosen20122
4Glenn GawdinBrian HalonenIsak Rosen10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Billy SweezeyEthan Frisch40122
2Ben ZlotyValtteri Pulli30122
3Valtteri PulliEthan Frisch20122
4Ethan FrischValtteri Pulli10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Isak RosenCole GuttmanBrian Halonen60122
2Glenn GawdinEgor SokolovOwen Beck40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Valtteri PulliBilly Sweezey60122
2Ben ZlotyEthan Frisch40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Isak RosenGlenn Gawdin60122
2Cole GuttmanBrian Halonen40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Billy SweezeyValtteri Pulli60122
2Ethan FrischBen Zloty40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Glenn Gawdin60122Valtteri PulliEthan Frisch60122
2Isak Rosen40122Billy SweezeyTyson Feist40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Isak RosenGlenn Gawdin60122
2Brian HalonenCole Guttman40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Billy SweezeyBen Zloty60122
2Valtteri PulliEthan Frisch40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Glenn GawdinIsak RosenCole GuttmanBilly SweezeyValtteri Pulli
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Glenn GawdinIsak RosenCole GuttmanBilly SweezeyValtteri Pulli
Extra Forwards
Normal PowerPlayPenalty Kill
Glenn Gawdin, Isak Rosen, Brian HalonenGlenn Gawdin, Isak RosenGlenn Gawdin
Extra Defensemen
Normal PowerPlayPenalty Kill
Valtteri Pulli, Ethan Frisch, Billy SweezeyValtteri PulliEthan Frisch, Valtteri Pulli
Penalty Shots
Cole Guttman, Glenn Gawdin, Egor Sokolov, Brian Halonen, Isak Rosen
Goalie
#1 : Jacob Ingham, #2 : Connor Hughes


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Rocket200001102201000010012-11000001010130.7502240101662361927131794292150.00%2150.00%0314175.61%336253.23%304075.00%6419784710753
2Senators1010000047-3000000000001010000047-300.00046100001661461927134212419400.00%220.00%0314175.61%336253.23%304075.00%6419784710753
3Wolves1000000123-11000000123-10000000000010.5002460001661561927131552715100.00%6183.33%0314175.61%336253.23%304075.00%6419784710753
Total40100111812-42000010135-22010001057-240.50081220010166526192713742635637114.29%10460.00%0314175.61%336253.23%304075.00%6419784710753
_Since Last GM Reset40100111812-42000010135-22010001057-240.50081220010166526192713742635637114.29%10460.00%0314175.61%336253.23%304075.00%6419784710753
_Vs Conference40100111812-42000010135-22010001057-240.50081220010166526192713742635637114.29%10460.00%0314175.61%336253.23%304075.00%6419784710753

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
44L181220527426356301
All Games
GPWLOTWOTL SOWSOLGFGA
4010111812
Home Games
GPWLOTWOTL SOWSOLGFGA
200010135
Visitor Games
GPWLOTWOTL SOWSOLGFGA
201001057
Last 10 Games
WLOTWOTL SOWSOL
110101
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
7114.29%10460.00%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
61927130166
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
314175.61%336253.23%304075.00%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
6419784710753


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
16Rocket2Monsters1LXBoxScore
221Monsters1Rocket0WXXBoxScore
443Wolves3Monsters2LXXBoxScore
551Monsters4Senators7LBoxScore
770Rocket-Monsters-
997IceHogs-Monsters-
10103Monsters-Comets-
11126Monsters-Wolves-
12136Barracuda-Monsters-
13148Monsters-Barracuda-
15170Rocket-Monsters-
16184Monsters-Stars-
17197Monsters-Senators-
18213Thunderbirds-Monsters-
19231IceHogs-Monsters-
20245Monsters-Islanders-
22258Monsters-Comets-
23271Canucks-Monsters-
24289Moose-Monsters-
26305Monsters-Silver Knights-
27320Wild-Monsters-
29335Monsters-Canucks-
30352Heat-Monsters-
31375Wolves-Monsters-
32384Monsters-Griffins-
33398Monsters-Condors-
34413Reign-Monsters-
35433Monsters-Bears-
36442Monsters-Crunch-
37458Rocket-Monsters-
39475Senators-Monsters-
40494Monsters-Checkers-
41507Condors-Monsters-
42526Monsters-Senators-
43537Monsters-Thunderbirds-
44550Admirals-Monsters-
45566Wolf Pack-Monsters-
46584Monsters-Islanders-
47598Monsters-Moose-
48611Penguins-Monsters-
49628Bruins-Monsters-
51657Islanders-Monsters-
53674Monsters-Bruins-
54689Silver Knights-Monsters-
55708Monsters-Stars-
56719Checkers-Monsters-
57735Monsters-Reign-
59751Americans-Monsters-
60769Monsters-Penguins-
61780Gulls-Monsters-
63803Monsters-Heat-
64812IceHogs-Monsters-
65824Monsters-Barracuda-
67844Comets-Monsters-
68856Monsters-Americans-
69871Monsters-Marlies-
70884Crunch-Monsters-
72905Barracuda-Monsters-
73915Monsters-Rocket-
74927Monsters-Barracuda-
75942Marlies-Monsters-
77964Griffins-Monsters-
79975Monsters-Wolf Pack-
80997Bears-Monsters-
811003Monsters-Phantoms-
821021Monsters-Roadrunners-
831036Bears-Monsters-
851056Griffins-Monsters-
861065Monsters-Gulls-
881083Monsters-Admirals-
891098Roadrunners-Monsters-
901116Monsters-Wolves-
911126Monsters-Americans-
921139Phantoms-Monsters-
941158Wolves-Monsters-
961180Monsters-Eagles-
Trade Deadline --- Trades can’t be done after this day is simulated!
971194Comets-Monsters-
981201Monsters-IceHogs-
991220Eagles-Monsters-
1001231Monsters-Wild-
1011239Monsters-IceHogs-
1021246Monsters-Wolf Pack-
1041264Thunderbirds-Monsters-
1061290Senators-Monsters-
1081311Stars-Monsters-
1101321Monsters-Comets-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3515
Attendance2,6291,498
Attendance PCT65.73%74.90%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
41 2064 - 68.78% 85,292$170,583$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Salaries CapCoaches Salaries
189,240$ 2,639,000$ 2,639,000$ 1,600,000$0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
23,562$ 117,810$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
3,496,952$ 107 37,848$ 4,049,736$




Monsters Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Monsters Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Monsters Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Monsters Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Monsters Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA